首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The late steps of both 16S and 5S ribosomal RNA maturation in the Gram-positive bacterium Bacillus subtilis have been shown to be catalysed by ribonucleases that are not present in the Gram-negative paradigm, Escherichia coli. Here we present evidence that final maturation of the 5' and 3' extremities of B. subtilis 23S rRNA is also performed by an enzyme that is absent from the Proteobacteria. Mini-III contains an RNase III-like catalytic domain, but curiously lacks the double-stranded RNA binding domain typical of RNase III itself, Dicer, Drosha and other well-known members of this family of enzymes. Cells lacking Mini-III accumulate precursors and alternatively matured forms of 23S rRNA. We show that Mini-III functions much more efficiently on precursor 50S ribosomal subunits than naked pre-23S rRNA in vitro, suggesting that maturation occurs primarily on assembled subunits in vivo. Lastly, we provide a model for how Mini-III recognizes and cleaves double-stranded RNA, despite lacking three of the four RNA binding motifs of RNase III.  相似文献   

2.
Domain III of Saccharomyces cerevisiae 25 S rRNA contains the recognition site for the primary rRNA-binding ribosomal protein L25, which belongs to the functionally conserved EL23/L25 family of ribosomal proteins. The EL23/L25 binding region is very complex, consisting of several irregular helices held together by long-distance secondary and tertiary interactions. Moreover, it contains the eukaryote-specific V9 (D7a) expansion segment. Functional characterisation of the structural elements of this site by a detailed in vitro and in vivo mutational analysis indicates the presence of two separate regions that are directly involved in L25 binding. In particular, mutation of either of two conserved nucleotides in the loop of helix 49 significantly reduces in vitro L25 binding, thus strongly supporting their role as attachment sites for the r-protein. Two other helices appear to be primarily required for the correct folding of the binding site. Mutations that abolish in vitro binding of L25 block accumulation of 25 S rRNA in vivo because they stall pre-rRNA processing at the level of its immediate precursor, the 27 S(B) pre-rRNA. Surprisingly, several mutations that do not significantly affect L25 binding in vitro cause the same lethal defect in 27 S(B) pre-rRNA processing. Deletion of the V9 expansion segment also leads to under-accumulation of mature 25 S rRNA and a twofold reduction in growth rate. We conclude that an intact domain III, including the V9 expansion segment, is essential for normal processing and assembly of 25 S rRNA.  相似文献   

3.
Previously we described an in vitro selection variant abbreviated SERF (in vitro selection from random rRNA fragments) that identifies protein binding sites within large RNAs. With this method, a small rRNA fragment derived from the 23S rRNA was isolated that binds simultaneously and independently the ribosomal proteins L4 and L24 from Escherichia coli. Until now the rRNA structure within the ternary complex L24-rRNA-L4 could not be studied due to the lack of an appropriate experimental strategy. Here we tackle the issue by separating the various complexes via native gel-electrophoresis and analyzing the rRNA structure by in-gel iodine cleavage of phosphorothioated RNA. The results demonstrate that during the transition from either the L4 or L24 binary complex to the ternary complex the structure of the rRNA fragment changes significantly. The identified protein binding sites are in excellent agreement with the recently reported crystal structure of the 50S subunit. Because both proteins play a prominent role in early assembly of the large subunit, the results suggest that the identified rRNA fragment is a key element for the folding of the 23S RNA during early assembly. The introduced in-gel cleavage method should be useful when an RNA structure within mixed populations of different but related complexes should be studied.  相似文献   

4.
The binding site of the yeast 60S ribosomal subunit protein L25 on 26S rRNA was determined by RNase protection experiments. The fragments protected by L25 originate from a distinct substructure within domain IV of the rRNA, encompassing nucleotides 1465-1632 and 1811-1861. The protected fragments are able to rebind to L25 showing that they constitute the complete protein binding site. This binding site is remarkably conserved in all 23/26/28S rRNAs sequenced to date including Escherichia coli 23S rRNA. In fact heterologous complexes between L25 and E. coli 23S rRNA could be formed and RNase protection studies on these complexes demonstrated that L25 indeed recognizes the conserved structure. Strikingly the L25 binding site on 23S rRNA is virtually identical to the previously identified binding site of E. coli ribosomal protein EL23. Therefore EL23 is likely to be the prokaryotic counterpart of L25 in spite of the limited homology displayed by the amino acid sequences of the two proteins.  相似文献   

5.
6.
Ribosomal protein L11 is a highly conserved protein that has been implicated in binding of elongation factors to ribosomes and associated GTP hydrolysis. Here, we have analyzed the ribosomal RNA neighborhood of Escherichia coli L11 in 50 S subunits by directed hydroxyl radical probing from Fe(II) tethered to five engineered cysteine residues at positions 19, 84, 85, 92 and 116 via the linker 1-(p -bromoacetamidobenzyl)-EDTA. Correct assembly of the L11 derivatives was analyzed by incorporating the modified proteins into 50 S subunits isolated from an E. coli strain that lacks L11 and testing for previously characterized L11-dependent footprints in domain II of 23 S rRNA. Hydroxyl radicals were generated from Fe(II) tethered to L11 and sites of cleavage in the ribosomal RNA were detected by primer extension. Strong cleavages were detected within the previously described binding site of L11, in the 1100 region of 23 S rRNA. Moreover, Fe(II) tethered to position 19 in L11 targeted the backbone of the sarcin loop in domain VI while probing from position 92 cleaved the backbone around bases 900 and 2470 in domains II and V, respectively. Fe(II) tethered to positions 84, 85 and 92 also generated cleavages in 5 S rRNA around helix II. These data provide new information about the positions of specific features of 23 S rRNA and 5 S rRNA relative to protein L11 in the 50 S subunit and show that L11 is near highly conserved elements of the rRNA that have been implicated in binding of tRNA and elongation factors to the ribosome.  相似文献   

7.
Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention.  相似文献   

8.
We report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe and its exploitation in identifying 50S ribosomal subunit components neighboring the alpha-sarcin loop. The probe is complementary to 23S rRNA nt 2653-2674. Photolysis of the complex formed between the probe and 50S subunits leads to site-specific probe photoincorporation into proteins L2, the most highly labeled protein, L1, L15, L16 and L27, labeled to intermediate extents, and L5, L9, L17 and L24, each labeled to a minor extent. Portions of each of these proteins thus lie within 23 A of nt U2653. These results lead us to conclude that the alpha-sarcin loop is located at the base of the L1 projection within the 50S subunit. Such placement, near the peptidyl transferase center, provides a rationale for the extreme sensitivity of ribosomal function to cleavage of the alpha-sarcin loop.  相似文献   

9.
We have investigated protein-rRNA cross-links formed in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus at the molecular level using UV and 2-iminothiolane as cross-linking agents. We identified amino acids cross-linked to rRNA for 13 ribosomal proteins from these organisms, namely derived from S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29 and L36. Several other peptide stretches cross-linked to rRNA have been sequenced in which no direct cross-linked amino acid could be detected. The cross-linked amino acids are positioned within loop domains carrying RNA binding features such as conserved basic and aromatic residues. One of the cross-linked peptides in ribosomal protein S3 shows a common primary sequence motif--the KH motif--directly involved in interaction with rRNA, and the cross-linked amino acid in ribosomal protein L36 lies within the zinc finger-like motif of this protein. The cross-linked amino acids in ribosomal proteins S17 and L6 prove the proposed RNA interacting site derived from three-dimensional models. A comparison of our structural data with mutations in ribosomal proteins that lead to antibiotic resistance, and with those from protein-antibiotic cross-linking experiments, reveals functional implications for ribosomal proteins that interact with rRNA.  相似文献   

10.
Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5′ end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3′ end of 5.8S rRNA and the 5′ end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing.  相似文献   

11.
The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex with a specific fragment of 23S rRNA determined earlier. In both complexes, a strongly conserved RNA structural motif is involved in L1 binding through a conserved network of RNA–protein H-bonds inaccessible to the solvent. These interactions should be responsible for specific recognition between the protein and RNA. A large number of additional non-conserved RNA–protein H-bonds stabilizes both complexes. The added contribution of these non-conserved H-bonds makes the ribosomal complex much more stable than the regulatory one.  相似文献   

12.
Escherichia coli ribosomal L20 is one of five proteins essential for the first reconstitution step of the 50S ribosomal subunit in vitro. It is purely an assembly protein, because it can be withdrawn from the mature subunit without effect on ribosome activity. In addition, L20 represses the translation of its own gene by binding to two sites in its mRNA. The first site is a pseudoknot formed by a base-pairing interaction between nucleotide sequences separated by more than 280 nucleotides, whereas the second site is an irregular helix formed by base-pairing between neighbouring nucleotide sequences. Despite these differences, the mRNA folds in such a way that both L20 binding sites share secondary structure similarity with the L20 binding site located at the junction between helices H40 and H41 in 23S rRNA. Using a set of genetic, biochemical, biophysical, and structural experiments, we show here that all three sites are recognized similarly by L20.  相似文献   

13.
The ribosomal protein complex L8 of Escherichia coli consists of two dimers of protein L7/L12 and one monomer of protein L10. This pentameric complex and ribosomal protein L11 bind in mutually cooperative fashion to 23 S rRNA and protect specific fragments of the latter from digestion with ribonuclease T1. Oligonucleotides protected either by the L8 complex alone or by the complex plus protein L11 were isolated from such digests and shown to rebind specifically to these proteins. They were also subjected to nucleotide sequence analysis. The longest oligonucleotide, protected by the L8 complex alone, consisted of residues 1028-1124 of 23 S rRNA and included all the other RNA fragments produced in this study. Previously, protein L11 had been shown to protect residues 1052-1112 of 23 S rRNA. It is concluded that the binding sites for the L8 protein complex and for protein L11 are immediately adjacent within 23 S rRNA of E. coli.  相似文献   

14.
15.
The 23S rRNA nucleotides 2604-12 and 2448-58 fall within the central loop of domain V, which forms a major part of the peptidyl transferase center of the ribosome. We report the synthesis of radioactive, photolabile 2'-O-methyloligoRNAs, PHONTs 1 and 2, complementary to these nucleotides and their exploitation in identifying 50S ribosomal subunit components neighboring their target sites. Photolysis of the 50S complex with PHONT 1, complementary to nts 2604-12, leads to target site-specific photoincorporation into protein L2 and 23S rRNA nucleotides A886, Alpha1918, A1919, G1922-C1924, U2563, U2586, and C2601. Photolysis of the 50S complex with PHONT 2, complementary to nts 2448-58, leads to target site-specific probe photoincorporation into proteins L2, L3, one or more of proteins L17, L18, L21, and of proteins L9, L15, L16, and 23S rRNA nucleotides C2456 and psi2457. Chemical footprinting studies show that 2'-O-methyloligoRNA binding causes little distortion of the peptidyl transferase center but do provide suggestive evidence for the location of flexible regions within 23S rRNA. The significance of these results for the structure of the peptidyl transferase center is considered.  相似文献   

16.
Ribonuclease III (RNase III) type of enzymes are double-stranded RNA (dsRNA)-specific endoribonucleases that have important roles in RNA maturation and mRNA decay. They are involved in processing precursors of ribosomal RNA (rRNA) in bacteria as well as precursors of short interfering RNAs (siRNAs) and microRNAs (miRNAs) in eukaryotes. RNase III proteins have been grouped in three major classes according to their domain organization. In this issue of Molecular Microbiology, Redko et al. identified a novel class of bacterial RNase III, named Mini-III, consisting only of the RNase III catalytic domain and functioning in the maturation of the 23S rRNA in Bacillus subtilis. Its absence from proteobacteria reveals that this step is mechanistically different from the corresponding step in Escherichia coli. The fact that Mini-III orthologues are present in unicellular photosynthetic eukaryotes and in plants opens new opportunities for functional studies of this type of RNases.  相似文献   

17.
The eukaryotic ribosomal 5S RNA–protein complex (5S rRNP) is formed by a co-translational event that requires 5S rRNA binding to the nascent peptide chain of eukaryotic ribosomal protein L5. Binding between 5S rRNA and the nascent chain is specific: neither the 5S rRNA nor the nascent chain of L5 protein can be substituted by other RNAs or other ribosomal proteins. The region responsible for binding 5S rRNA is located at positions 35–50 with amino acid sequence RLVIQDIKNKYNTPKYRM. Eukaryotic 5S rRNA binds a nascent chain having this sequence, but such binding is not substantive enough to form a 5S-associated RNP complex, suggesting that 5S rRNA binding to the nascent chain is amino acid sequence dependent and that formation of the 5S rRNP complex is L5 protein specific. Microinjection of 5S rRNP complex into the cytoplasm of Xenopus oocytes results in both an increase in the initial rate and also in the extent of net nuclear import of L5. This suggests that the 5S rRNP complex enhances nuclear transport of L5. We propose that 5S rRNA plays a chaperone-like role in folding of the nascent chain of L5 and directs L5 into a 5S rRNP complex for nuclear entry.  相似文献   

18.
19.
Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that mediates displacement of initiation factors from the 40S ribosomal subunit in 48S initiation complexes and joining of 40S and 60S subunits. Here, we determined eIF5B's position on 80S ribosomes by directed hydroxyl radical cleavage. In the resulting model, eIF5B is located in the intersubunit cleft of the 80S ribosome: domain 1 is positioned near the GTPase activating center of the 60S subunit, domain 2 interacts with the 40S subunit (helices 3, 5 and the base of helix 15 of 18S rRNA and ribosomal protein (rp) rpS23), domain 3 is sandwiched between subunits and directly contacts several ribosomal elements including Helix 95 of 28S rRNA and helix 44 of 18S rRNA, domain 4 is near the peptidyl-transferase center and its helical subdomain contacts rpL10E. The cleavage data also indicate that binding of eIF5B might induce conformational changes in both subunits, with ribosomal segments wrapping around the factor. Some of these changes could also occur upon binding of other translational GTPases, and may contribute to factor recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号