首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,4-Naphthoquinones have already been recognized to possess a wide range of biological activities. We have developed quantitative structure activity relationships (QSAR) for different series of 2- or 6-substituted-5,8-dimethoxy-1,4-naphthoquinones to understand the chemical-biological interaction governing antiproliferative/cytotoxic activities against L1210 cells. QSAR results have shown that these activities of 2- or 6-substituted-5,8-dimethoxy-1,4-naphthoquinones depend largely on their hydrophobicity.  相似文献   

2.
Twenty-one substituted 1,4-naphthoquinones and five 8-quinolinols and copper(II) chelates were tested for antifungal activity against Candida albicans and Trichophyton mentagrophytes. Compounds containing electron-releasing or weak electron-withdrawing groups in the 2 and 3 positions of the 1,4-naphthoquinone ring were the most active against C. albicans at pH 7.0 in the presence of beef serum in the following order: 2-CH3O = 2,3-(CH3O)2 greater than 2-CH3 greater than 2-CH3S greater than 2-NH2 greater than 2,6-(CH3)2. For T. mentagrophytes under the same conditions the inhibitory 1,4-naphthoquinones contained the substituents 2-CH3O greater than 2,3-(CH3O)2 greater than 2-CH2S greater than 2-CH3 greater than 2-CH3(NaHSO3) greater than 2-NH2 greater than 2-C2H5S, 3-CH3 greater than 2,6-(CH3)2 greater than 2,3-CL2 greater than 5,8-(OH)2.  相似文献   

3.
All of 13 (E)-6-(1-alkyloxyiminomethyl)-5,8-dimethoxy-1,4-naphthoquinone derivatives synthesized showed high ED50 values, ranging from 0.1 to 0.3 microg/mL against L1210 cells. However, they were inactive on A549 cells. Nine compounds exhibited higher T/C (%) values (318-388%) than Adriamycin (T/C, 315%).  相似文献   

4.
The effect of hydroxy substitution on 1,4-naphthoquinone toxicity to cultured rat hepatocytes was studied. Toxicity of the quinones decreased in the series 5,8-dihydroxy-1,4-naphthoquinone greater than 5-hydroxy-1,4-naphthoquinone greater than 1,4-naphthoquinone greater than 2-hydroxy-1,4-naphthoquinone, and intracellular GSSG formation decreased in the order 5,8-dihydroxy-1,4-naphthoquinone greater than 5-hydroxy-1,4-naphthoquinone much greater than 1,4-naphthoquinone much greater than 2-hydroxy-1,4-naphthoquinone. The electrophilicity of the quinones decreased in the order 1,4-naphthoquinone much greater than 5-hydroxy-1,4-naphthoquinone greater than 5,8-dihydroxy-1,4-naphthoquinone much greater than 2-hydroxy-1,4-naphthoquinone. Treatment of the hepatocytes with BSO (buthionine sulfoximine) or BCNU (1,3-bis-2-chloroethyl-1-nitrosourea) increased 5-hydroxy-1, 4-naphthoquinone and 5,8-dihydroxy-1,4-naphthoquinone toxicity, whereas neither BSO nor BCNU largely affected 1,4-naphthoquinone and 2-hydroxy-1, 4-naphthoquinone toxicity. Dicumarol increased the toxicity of 1,4-naphthoquinone dramatically and somewhat the toxicity of 2-hydroxy-1,4- naphthoquinone, whereas 5-hydroxy-1,4-naphthoquinone and 5,8-dihydroxy-1,4-naphthoquinone toxicity increased only slightly. The toxicity of 5,8-dihydroxy-1,4-naphthoquinone decreased dramatically in reduced O2 concentration, whereas 1,4-naphthoquinone, 5-hydroxy-1,4-naphthoquinone, and 2-hydroxy-1,4-naphthoquinone toxicity was not largely affected. It was concluded that 5,8-dihydroxy-1,4-naphthoquinone toxicity is due to free radical formation, whereas the toxicity of 1,4-naphthoquinone and of 5-hydroxy-1,4-naphthoquinone also has an electrophilic addition component. The toxicity of 2-hydroxy-1,4-naphthoquinone could not be fully explained by either of these phenomena.  相似文献   

5.
2-Amino (6), 2-alkylamino (7–8), 2-methoxy (9), 2-acetamido (10), and 5,8-diacetoxy (11) derivatives of the lead compound 2,3-dichloro-5,8-dimethoxy-1,4-naphthoquinone (4) were synthesized, together with 6,7-dichloro-5,8-dimethoxy-1,4-naphthoquinone (5), a positional isomer of 4. Antiplatelet, antiinflammatory, and antiallergic activities were evaluated, and most compounds were quite potent in all assays. Compounds 5 and 9–11 were especially active; however, 5 was ineffective against neutrophil superoxide formation, and 10 was ineffective against mast cell degranulation.  相似文献   

6.
Anti-glycation activity of our anti-oxidant quinone library was measured and several 2,3-dimethoxy-5-methyl-1,4-benzoquinones and 2-methyl-1,4-naphthoquinones were identified as novel inhibitors of glycation, of which 2,3-dimethoxy-5-methyl-1,4-benzoquinones 13b is the most potent glycation inhibitor with around 50 microM of the IC(50) value.  相似文献   

7.
Mitogen activated protein kinases are of interest as research tools and as therapeutic target for certain physiological disorders. In this study, we found 2-chloro-3-(N-succinimidyl)-1,4-naphthoquinone 6 to be a selective inhibitor of MEK1 with an IC(50) of 0.38 microM. An open-chain homologue, 10, showed selective cytotoxicity against renal cancer in the NCI in vitro tumor screening. Structure-activity relationship study of eight compounds showed the cyclic imido-substituted chloro-1,4-naphthoquinone as more potent and selective MEK1 inhibitors than the open chain homologues. The imido-substituted chloro-1,4-naphthoquinones were synthesized in a straightforward fashion by refluxing 2-amino-3-chloro-1,4-naphthoquinone with the appropriate acid chloride or diacyl dichloride.  相似文献   

8.
The photoaffinity analogues of ubiquinone 2,3-dimethoxy-5-methyl-6-[2-[1-oxo-3-(4-azido-2-nitroanilino) propoxy]-3-methylbutyl]-1,4-benzoquinone (2'-ANAP-Q-1) and 2,3-dimethoxy-5-methyl-6-[3-[1-oxo-3-(4-azido-2-nitroanilino) propoxy]-3-methylbutyl]-1,4-benzoquinone (3'-ANAP-Q-1) have been synthesized. The required intermediate alcohols 2,3-dimethoxy-5-methyl-6-(2-hydroxy-3-methylbutyl)-1,4-benzoquinone and 2,3-dimethoxy-5-methyl-6-(3-hydroxy-3-methylbutyl)-1,4-benzoquinone were prepared in good yield from ubiquinone 1 by hydration of the side-chain double bond via hydroboration or acid catalysis, respectively. These alcohols were then coupled with 3-(4-azido-2-nitroanilino)propanoic acid, with p-toluenesulfonyl chloride in dry pyridine, to give 2'- and 3'-ANAP-Q-1. The synthetic methods presented should be of general utility in the preparation of derivatives of ubiquinone in which a reactive or reporter group is relatively close to the ubiquinone ring. By use of membrane vesicles prepared from a ubi-men-strain of Escherichia coli described previously [Wallace, B., & Young, I. G. (1977) Biochim. Biophys. Acta 461, 84-100], it has been shown that 2'- and 3'-ANAP-Q-1 substitute for ubiquinone 8 in the NADH, succinate, and D-lactate oxidase systems. Thus, these compounds may be of value in labeling respiratory chain proteins that interact with ubiquinone.  相似文献   

9.
Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone), the basic unit of several tetracyclic antitumor antibiotics, and its glutathione conjugate were reduced by the one- and two-electron transfer flavoproteins NADPH-cytochrome P450 reductase and DT-diaphorase to their semi- and hydroquinone forms, respectively. Kinetic studies performed on purified DT-diaphorase showed the following results: KNADPHm = 68 microM, KQuinonem = 0.92 microM, and Vmax 1300 nmol X min-1 X microgram enzyme-1. Similar studies performed on purified NADPH-cytochrome P450 reductase indicated a lower KNADPHm (10.5 microM) and higher KQuinonem (2.3 microM). The Vmax values were 20-fold lower (46 nmol X min-1 X micrograms enzyme-1) than those observed with DT-diaphorase. DT-diaphorase reduced the naphthazarin-glutathione conjugate with an efficiency 5-fold lower than that observed with the parent quinone. The nucleophilic addition of GSH to naphthazarin proceeded with GSH consumption at rates slower than those observed with 1,4-naphthoquinone and its monohydroxy derivative, 5-hydroxy-1,4-naphthoquinone. The initial rate of GSH consumption during these reactions did not vary whether the assay was carried out under anaerobic or aerobic conditions. Autoxidation accompanied the DT-diaphorase and NADPH-cytochrome P450 reductase catalysis of naphthazarin and its glutathionyl adduct as well as the 1,4-reductive addition of GSH to naphthazarin. Superoxide dismutase at catalytic concentrations (nM range) enhanced slightly (1.1- to 1.6-fold) the autoxidation following the enzymatic catalysis of naphthazarin. Autoxidation during the GSH reductive addition to 1,4-naphthoquinones decreased with increasing number of -OH substituents, 1,4-naphthoquinone greater than 5-hydroxy-1,4-naphthoquinone greater than 5,8-dihydroxy-1,4-naphthoquinone, thus revealing that the contribution of redox transitions other than autoxidation, e.g., cross-oxidation, to the decay of the primary product of nucleophilic addition increases with increasing number of -OH substituents. Superoxide dismutase enhanced substantially the autoxidation of glutathionyl-naphthohydroquinone adducts, thereby affecting only slightly the total GSH consumed and GSSG formed during the reaction. The present results are discussed in terms of the relative contribution of one- and two-electron transfer flavoproteins to the bioreductive activation of naphthazarin and its glutathionyl conjugate as well as the importance of autoxidation reactions in the mechanism(s) of quinone cytotoxicity.  相似文献   

10.
Manganese peroxidase (MnP) oxidized 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-(4-(hydroxymethyl)-2-methoxyphenoxy) -1,3-dihydroxypropane (I) in the presence of MnII and H2O2 to yield 1-(3,5-dimethoxy-4-hydroxyphenyl)- 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-1-oxo-3-hydroxypropane (II), 2,6-dimethoxy-1,4-benzoquinone (III), 2,6-dimethoxy-1,4-dihydroxybenzene (IV), 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-3-hydroxypropanal (V), syringaldehyde (VI), vanillyl alcohol (VII), and vanillin (VIII). MnP oxidized II to yield 2,6-dimethoxy-1,4-benzoquinone (III), 2,6-dimethoxy-1,4-dihydroxybenzene (IV), vanillyl alcohol (VII), vanillin (VIII), syringic acid (IX), and 2-(4-(hydroxymethyl)-2-methoxyphenoxy)-3-hydroxypropanoic acid (X). A chemically prepared MnIII-malonate complex catalyzed the same reactions. Oxidation of I and II in H2(18)O under argon resulted in incorporation of one atom of 18O into the quinone III and into the hydroquinone IV. Incorporation of one atom of oxygen from H2(18)O into syringic acid (IX) and the phenoxypropanoic acid X was also observed in the oxidation of II. These results are explained by mechanisms involving the initial one-electron oxidation of I or II by enzyme-generated MnIII to produce a phenoxy radical. This intermediate is further oxidized by MnIII to a cyclohexadienyl cation. Loss of a proton, followed by rearrangement of the quinone methide intermediate, yields the C alpha-oxo dimer II as the major product from substrate I. Alternatively, cyclohexadienyl cations are attacked by water. Subsequent alkyl-phenyl cleavage yields the hydroquinone IV and the phenoxypropanal V from I, and IV and the phenoxypropanoic acid X from II, respectively. The initial phenoxy radical also can undergo C alpha-C beta bond cleavage, yielding syringaldehyde (VI) and a C6-C2-ether radical from I and syringic acid (IX) and the same C6-C2-ether radical from II. The C6-C2-ether radical is scavenged by O2 or further oxidized by MnIII, subsequently leading to release of vanillyl alcohol (VII). VII and IV are oxidized to vanillin (VIII) and the quinone III, respectively.  相似文献   

11.
A series of 3-aryl-2-propenoates including cinnamates, (E)-methyl/ethyl 3-[2-(1,4-dimethoxy-5,8-dione)naphthalenyl]-2-propenoates (8ba, 8bb) and (E)-methyl/ethyl 3-[2-(1,4-dihydroxy-9,10-dione)anthracenyl]-2-propenoates (9aa,9ab) was synthesized and evaluated for antitumor cytotoxicity. It was found that the ortho- or para-dihydroxy funtionality on the aryl ring was essential for the cytotoxicity of cinnamates. Compounds 8ba, 8bb and 9aa, 9ab showed potent cytotoxicity against various tumor cell lines.  相似文献   

12.
To investigate the protein-ubiquinone interaction in the bovine heart mitochondrial succinate-cytochrome c reductase region of the respiratory chain, three fluorine substituted ubiquinone derivatives, 2,3-dimethoxy-6-(9'-fluorodecyl)-1,4-benzoquinone (9FQ), 2-methoxy-5-trifluoromethyl-6-decyl-1,4-benzoquinone (TFQ), and 2-methoxy-5-trifluoromethyl-6-(9'-fluorodecyl)-1,4-benzoquinone (9FTFQ), were synthesized. 9FQ was synthesized by radical coupling of Q0 and bis(10-fluoroundecanoyl)peroxide. The latter was prepared by fluorination of undecylenic acid followed by thionylchloride treatment and peroxidation. TFQ was synthesized from 2,2,2-trifluoro-p-cresol by methylation, nitration, reduction, acetylation, nitration, reduction, oxidation, and radical alkylation. 9FTFQ was prepared by the radical alkylation of 2-methoxy-5-trifluoromethyl-1,4-benzoquinone with bis(10-fluoroundecanoyl)peroxide. All three fluoro-Q derivatives are active (greater than 50% the activity of 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone) when used as electron acceptors for succinate-ubiquinone reductase. However, only 9FQ is active when used as an electron donor for ubiquinol-cytochrome c reductase or as an electron mediator for succinate-cytochrome c reductase. Both TFQ and 9FTFQ are competitive inhibitors for ubiquinol-cytochrome c reductase. A 19FNMR peak-broadening effect was observed for 9FQ when it was reconstituted with ubiquinone-depleted ubiquinol-cytochrome c reductase. A drastic up-field chemical shift was observed for TFQ when it was reconstituted with ubiquinone-depleted reductase. These results indicate that the binding environments of the benzoquinone ring and the alkyl side chain of the Q molecule are different. The strong up-field chemical shift for TFQ, and lack of significant chemical shift for 9FQ, suggest that the benzoquinone ring is bound near the paramagnetic cytochrome b heme.  相似文献   

13.
The synthesis and evaluation of some 2-substituted-1,4-naphthoquinones 2, S-(1,4-naphthoquinon-2-yl)-mercaptoalkanoic acid amides 4, related benzoquinone and naphthoquinone derivatives 6-9 and 2,3-disubstituted 1,4-naphthoquinones 10-11 were carried out. The antifungal, antibacterial, antiviral and anticancer activities were determined by using the standard assay. The results show that compounds 2b and 10a showed in vitro antiviral activity against Influenza-A Virus and Herpes Simplex Virus and possess pronounced antifungal profile whereas 4a showed anticancer activities against Lymphoid Leukaemia P 388.  相似文献   

14.
15.
A series of (S)-N-(1,4-naphthoquinon-2-yl)-alpha-amino acid methyl esters 3-9, 2-N,N-dialkylamino-1,4-naphthoquinones 10-11 and 2-hydroxy-3-(2'-mercaptoimidazolyl)-1,4-naphthoquinones and their cyclic analogs 12-15 were synthesized and evaluated for antifungal and antibacterial activities. The structure-activity relationships of these compounds were studied and the results show that the compounds 9b and 13c exhibited in vitro antifungal activity against Candida albicans, Cryptococcus neoformans, and Sporothrix schenckii, whereas compound 6a showed in vitro antibacterial activity against Streptococcus faecalis, K. pneumoniae, Escherichia coli, and Staphylococcus aureus.  相似文献   

16.
Two new naphthoquinones, 5-hydroxy-3,6-dimethoxy-2-methylnaphthalene-1,4-dione and 5,8-dihydroxy-3-methoxy-2-methylnaphthalene-1,4-dione, were isolated from the roots of Aloe secundiflora together with the known compounds chrysophanol, helminthosporin, isoxanthorin, ancistroquinone C, aloesaponarins I and II, aloesaponols I and II, laccaic acid d methyl ester and asphodelin. The structures were elucidated based on spectroscopic evidence. This appears to be the first report on the occurrence of naphthoquinones in the genus Aloe. Aloesaponarin I and 5-hydroxy-3,6-dimethoxy-2-methylnaphthalene-1,4-dione showed anti-bacterial activity against Mycobacterium tuberculosis with MIC values of 21–23 μg/mL in the Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA); 5-hydroxy-3,6-dimethoxy-2-methylnaphthalene-1,4-dione also showed cytotoxicity against the Vero cell line (IC50 = 10.2 μg/mL).  相似文献   

17.
Fluorinated derivatives of 1,4-naphthoquinones are highly potent inhibitors of Cdc25A and Cdc25B phosphatases and growth of tumor cells. Eight new derivatives of polyfluoro-1,4-naphthoquinone were synthesized and their cytotoxicity in human myeloma, human mammary adenocarcinoma, mouse fibroblasts and primary mouse fibroblast cells as well as their mutagenic and antioxidant properties in a Salmonella tester strain were studied. The efficiency of suppressing the growth of two lines of tumor cells decreased in the order: 2-(2-hydroxy-ethylamino)-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (1), 2,3-dimethoxy-5,6,7,8-tetrafluoro-1,4-naphthoquinone (2), 2-[2-hydroxyethyl(methyl)amino]-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (3), 2-morpholino-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (4), 2-[bis-(2-hydroxyethyl)amino]-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (5), 2-[(2-hydroxy)ethylsulfanyl)]-5,6,7,8-tetrafluoro-1,4-naphthoquinone (6), 2-methoxy-3,5,6,7,8-pentafluoro-1,4-naphthoquinone (7), and 1,4-dioxo-3-(1-pyridinio)-1,4-dihydro-5,6,7,8-tetrafluoronaphthalene-2-olate (8). Taking into account these data together with the better cytotoxic effect against cancer cells as compared with normal mammalian cells, protecting of bacterial cells from spontaneous and H2O2-dependent mutagenesis, and lower general toxicity of the compounds towards different cells, one can propose that compounds 3-5 may be considered as useful potential inhibitors of growth of tumor cells.  相似文献   

18.
In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence and on flash-induced cytochrome c oxidation were studied in whole cells under aerobic conditions. BChl c fluorescence in a cell suspension with 5.4 microM BChl c was quenched to 50% by addition of 0.6 microM shikonin ((R)-2-(1-hydroxy-4-methyl-3-pentenyl)-5,8-dihydroxy-1, 4-naphthoquinone), 0.9 microM 5-hydroxy-1,4-naphthoquinone, or 4 microM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited, but not when BChl a was excited. The quenching of BChl c fluorescence induced by these quinones correlated with the inhibition of flash-induced cytochrome c oxidation. We concluded that the quinones inhibited electron transfer in the reaction center by specifically quenching the excitation energy in the BChl c antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus.  相似文献   

19.
The interaction of natural polyhydroxy-1,4-naphthoquinones (PHNQ) with superoxide anion-radical (O2) was studied by UV--visible spectrophotometry. 3-Acetyl-2,6,7-trihydroxynaphthazarin (spinochrome C), 2,3,7-trihydroxynaphthazarin (spinochrome D), 2,3,6, 7-tetrahydroxynaphthazarin (spinochrome E), 6-ethyl-2,3, 7-trihydroxynaphthazarin (echinochrome A), 6-ethyl-2,3, 7-trimethoxynaphthazarin (trimethoxyechinochrome A), and 2, 3-dihydroxy-6,7-dimethylnaphthazarin (A618) were tested. Xanthine and xanthine oxidase were used to generate **O2. The interaction with O2 led to significant time-dependent changes in the spectra of echinochrome A and spinochromes D and E. There was a weak influence of O2 on the spinochrome C spectrum and no change in the trimethoxyechinochrome A spectrum. The spectra that were transforming during the time of the reaction contained a pronounced isobestic point. This indicates that a single reaction product is being formed. We suggest that 1,2,3,4-tetraketones are formed from 2, 3,5,8-tetrahydroxy-1,4-naphthoquinones (echinochrome A and spinochromes D and E) via O2-induced oxidation of their OH-groups in the 2nd and 3rd positions. Reaction constants were determined by a competitive method using nitro blue tetrazolium (NBT). The reaction constants were about 104-105 M-1.sec-1. They decreased in the sequence: echinochrome A > spinochrome D > spinochrome C > NBT > trimethoxyechinochrome A. Thus, we conclude that some of the natural PHNQ containing hydroxyl groups in the 2nd and 3rd positions may act as powerful superoxide anion-radical scavengers.  相似文献   

20.
The phototransformation of 1-naphthol in aerated aqueous solution was investigated by means of product studies and laser flash photolysis. The quantum yield as measured at 313 nm was found to be equal to 3.2 x 10(-2) in oxygen-saturated medium while being 10-fold lower in deoxygenated solution. The main photoproducts in aerated medium were 1,4-naphthoquinone, 2-hydroxy-1,4-naphthoquinone and 6-hydroxy-1,4-naphthoquinone. Traces of 1,2-naphthoquinone and 5-hydroxy-1,4-naphthoquinones were detected too. Solvated electrons were detected by laser flash photolysis. The quantum yield of monophotonic ionisation was found to be lower than that of 1-naphthol photolysis indicating that other reaction pathways took place. The mechanisms of naphthoquinones and hydroxynaphthoquinones formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号