首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
C. elegans embryos exhibit an invariant lineage comprised primarily of a stepwise binary diversification of anterior-posterior (A-P) blastomere identities. This binary cell fate specification requires input from both the Wnt and MAP kinase signaling pathways. The nuclear level of the TCF protein POP-1 is lowered in all posterior cells. We show here that the beta-catenin SYS-1 also exhibits reiterated asymmetry throughout multiple A-P divisions and that this asymmetry is reciprocal to that of POP-1. Furthermore, we show that SYS-1 functions as a coactivator for POP-1, and that the SYS-1-to-POP-1 ratio appears critical for both the anterior and posterior cell fates. A high ratio drives posterior cell fates, whereas a low ratio drives anterior cell fates. We show that the SYS-1 and POP-1 asymmetries are regulated independently, each by a subset of genes in the Wnt/MAP kinase pathways. We propose that two genetic pathways, one increasing SYS-1 and the other decreasing POP-1 levels, robustly elevate the SYS-1-to-POP-1 ratio in the posterior cell, thereby driving A-P differential cell fates.  相似文献   

4.
5.
6.
7.
In Caenorhabditis elegans, Wnt signaling pathways are important in controlling cell polarity and cell migrations. In the embryo, a novel Wnt pathway functions through a (beta)-catenin homolog, WRM-1, to downregulate the levels of POP-1/Tcf in the posterior daughter of the EMS blastomere. The level of POP-1 is also lower in the posterior daughters of many anteroposterior asymmetric cell divisions during development. I have found that this is the case for of a pair of postembryonic blast cells in the tail. In wild-type animals, the level of POP-1 is lower in the posterior daughters of the two T cells, TL and TR. Furthermore, in lin-44/Wnt mutants, in which the polarities of the T cell divisions are frequently reversed, the level of POP-1 is frequently lower in the anterior daughters of the T cells. I have used a novel RNA-mediated interference technique to interfere specifically with pop-1 zygotic function and have determined that pop-1 is required for wild-type T cell polarity. Surprisingly, none of the three C. elegans (beta)-catenin homologs appeared to function with POP-1 to control T cell polarity. Wnt signaling by EGL-20/Wnt controls the migration of the descendants of the QL neuroblast by regulating the expression the Hox gene mab-5. Interfering with pop-1 zygotic function caused defects in the migration of the QL descendants that mimicked the defects in egl-20/Wnt mutants and blocked the expression of mab-5. This suggests that POP-1 functions in the canonical Wnt pathway to control QL descendant migration and in novel Wnt pathways to control EMS and T cell polarities.  相似文献   

8.
9.
The Caenorhabditis elegans vulva is comprised of highly similar anterior and posterior halves that are arranged in a mirror symmetric pattern. The cell lineages that form each half of the vulva are identical, except that they occur in opposite orientations with respect to the anterior/posterior axis. We show that most vulval cell divisions produce sister cells that have asymmetric levels of POP-1 and that the asymmetry has opposite orientations in the two halves of the vulva. We demonstrate that lin-17 (Frizzled type Wnt receptor) and lin-18 (Ryk) regulate the pattern of POP-1 localization and cell type specification in the posterior half of the vulva. In the absence of lin-17 and lin-18, posterior lineages are reversed and resemble anterior lineages. These experiments suggest that Wnt signaling pathways reorient cell lineages in the posterior half of the vulva from a default orientation displayed in the anterior half of the vulva.  相似文献   

10.
During C. elegans development, Wnt/WG signaling is required for differences in cell fate between sister cells born from anterior/posterior divisions. A beta-catenin-related gene, wrm-1, and the lit-1 gene are effectors of this signaling pathway and appear to downregulate the activity of POP-1, a TCF/LEF-related protein, in posterior daughter cells. We show here that lit-1 encodes a serine/threonine protein kinase homolog related to the Drosophila tissue polarity protein Nemo. We demonstrate that the WRM-1 protein binds to LIT-1 in vivo and that WRM-1 can activate the LIT-1 protein kinase when coexpressed in vertebrate tissue culture cells. This activation leads to phosphorylation of POP-1 and to apparent changes in its subcellular localization. Our findings provide evidence for novel regulatory avenues for an evolutionarily conserved Wnt/WG signaling pathway.  相似文献   

11.
12.
13.
Wnt signaling systems play important roles in the generation of cell and tissue polarity during development. We describe a Wnt signaling system that acts in a new way to orient the polarity of an epidermal cell division in C. elegans. In this system, the EGL-20/Wnt signal acts in a permissive fashion to polarize the asymmetric division of a cell called V5. EGL-20 regulates this polarization by counteracting lateral signals from neighboring cells that would otherwise reverse the polarity of the V5 cell division. Our findings indicate that this lateral signaling pathway also involves Wnt pathway components. Overexpression of EGL-20 disrupts both the asymmetry and polarity of lateral epidermal cell divisions all along the anteroposterior (A/P) body axis. Together our findings suggest that multiple, inter-related Wnt signaling systems may act together to polarize asymmetric cell divisions in this tissue.  相似文献   

14.
Asymmetric cell division is a mechanism for achieving cellular diversity. In C. elegans, many asymmetric cell divisions are controlled by the Wnt-MAPK pathway through POP-1/TCF. It is poorly understood, however, how POP-1 determines the specific fates of daughter cells. We found that nob-1/Hox, ceh-20/Pbx, and a Meis-related gene, psa-3, are required for asymmetric division of the T hypodermal cell. psa-3 expression was asymmetric between the T cell daughters, and it was regulated by POP-1 through a POP-1 binding site in the psa-3 gene. psa-3 expression was also regulated by NOB-1 and CEH-20 through a NOB-1 binding sequence in a psa-3 intron. PSA-3 can bind CEH-20 and function after the T cell division to promote the proper fate of the daughter cell. These results indicate that cooperation between Wnt signaling and a Hox protein functions to determine the specific fate of a daughter cell.  相似文献   

15.
16.
Sugioka K  Mizumoto K  Sawa H 《Cell》2011,146(6):942-954
Extrinsic signals received by a cell can induce remodeling of the cytoskeleton, but the downstream effects of cytoskeletal changes on gene expression have not been well studied. Here, we show that during telophase of an asymmetric division in C. elegans, extrinsic Wnt signaling modulates spindle structures through APR-1/APC, which in turn promotes asymmetrical nuclear localization of WRM-1/β-catenin and POP-1/TCF. APR-1 that localized asymmetrically along the cortex established asymmetric distribution of astral microtubules, with more microtubules found on the anterior side. Perturbation of the Wnt signaling pathway altered this microtubule asymmetry and led to changes in nuclear WRM-1 asymmetry, gene expression, and cell-fate determination. Direct manipulation of spindle asymmetry by laser irradiation altered the asymmetric distribution of nuclear WRM-1. Moreover, laser manipulation of the spindles rescued defects in nuclear POP-1 asymmetry in wnt mutants. Our results reveal a mechanism in which the nuclear localization of proteins is regulated through the modulation of microtubules.  相似文献   

17.
The three Caenorhabditis elegans beta-catenin each function in distinct processes: BAR-1 in canonical Wnt signaling that controls cell fates and cell migrations, HMP-2 in cell adhesion and WRM-1 in Wnt signaling pathways that function in conjunction with a mitogen-activated kinase (MAPK) pathway to control the orientations, or cell polarities, of cells that undergo asymmetric cell divisions. In addition, WRM-1 does not interact with the canonical beta-catenin binding site in POP-1/Tcf. Thus, Wnt signaling through WRM-1 is noncanonical and, except for one division that might not include any of the three C. elegans beta-catenin, controls cell polarity in C. elegans.  相似文献   

18.
The polarities of several cells that divide asymmetrically during Caenorhabditis elegans development are controlled by Wnt signaling. LIN-44/Wnt and LIN-17/Fz control the polarities of cells in the tail of developing C. elegans larvae, including the male-specific blast cell, B, that divides asymmetrically to generate a larger anterior daughter and a smaller posterior daughter. We determined that WRM-1 and the major canonical Wnt pathway components: BAR-1, SGG-1/GSK-3 and PRY-1/Axin were not involved in the control of B cell polarity. However, POP-1/Tcf is involved and is asymmetrically distributed to the B daughter nuclei, as it is in many cell divisions during C. elegans development. Aspects of the B cell division are reminiscent of the divisions controlled by the planar cell polarity (PCP) pathway that has been described in both Drosophila and vertebrate systems. We identified C. elegans homologs of Wnt/PCP signaling components and have determined that many of them appear to be involved in the regulation of B cell polarity. Specifically, MIG-5/Dsh, RHO-1/RhoA and LET-502/ROCK appear to play major roles, while other PCP components appear to play minor roles. We conclude that a noncanonical Wnt pathway, which is different from other Wnt pathways in C. elegans, regulates B cell polarity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号