首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic adenosine diphosphate ribose is an endogenous Ca(2+) mobilizer involved in diverse cellular processes. A cell membrane-permeable cyclic adenosine diphosphate ribose analogue, cyclic inosine diphosphoribose ether (cIDPRE), can induce Ca(2+) increase in intact human Jurkat T-lymphocytes. Here we synthesized a coumarin-caged analogue of cIDPRE (Co-i-cIDPRE), aiming to have a precisely temporal and spatial control of bioactive cIDPRE release inside the cell using UV uncaging. We showed that Co-i-cIDPRE accumulated inside Jurkat cells quickly and efficiently. Uncaging of Co-i-cIDPRE evoked Ca(2+) release from endoplasmic reticulum, with concomitant Ca(2+) influx in Jurkat cells. Ca(2+) release evoked by uncaged Co-i-cIDPRE was blocked by knockdown of ryanodine receptors (RyRs) 2 and 3 in Jurkat cells. The associated Ca(2+) influx, on the other hand, was abolished by double knockdown of Stim1 and TRPM2 in Jurkat cells. Furthermore, Ca(2+) release or influx evoked by uncaged Co-i-cIDPRE was recapitulated in HEK293 cells that overexpress RyRs or TRPM2, respectively, but not in wild-type cells lacking these channels. In summary, our results indicate that uncaging of Co-i-cIDPRE incites Ca(2+) release from endoplasmic reticulum via RyRs and triggers Ca(2+) influx via TRPM2.  相似文献   

2.
Cyclic ADP-ribose (cADPR) is an endogenous Ca(2+)-mobilizing second messenger in many cell types and organisms. Although the biological activity of several modified analogues of cADPR has been analyzed, most of these structures were still very similar to the original molecule. Recently, we have introduced simplified analogues in which the northern ribose (N(1)-linked ribose) was replaced by an ether strand. Here we also demonstrate that the southern ribose (N(9)-linked ribose) can be replaced by an ether strand resulting in N(1)-[(phosphoryl-O-ethoxy)-methyl]-N(9)-[(phosphoryl-O-ethoxy)-methyl]-hypoxanthinecyclic pyrophosphate (cIDP-DE). This minimal structural analogue of cyclic ADP-ribose released Ca(2+) from intracellular stores of permeabilized Jurkat T lymphocytes. In intact T lymphocytes initial subcellular Ca(2+) release events, global Ca(2+) release, and subsequent global Ca(2+) entry were observed. Cardiac myocytes freshly prepared from mice responded to cIDP-DE by increased recruitment of localized Ca(2+) signals and by global Ca(2+) waves.  相似文献   

3.
Contact of Jurkat T-lymphocytes with the extracellular matrix (ECM) protein laminin resulted in long-lasting alpha6beta1-integrin-mediated Ca(2+) signalling. Both Ca(2+) release from thapsigargin-sensitive Ca(2+) stores and capacitative Ca(2+) entry via Ca(2+) channels sensitive to SKF 96365 constitute important parts of this process. Inhibition of alpha6beta1-integrin-mediated Ca(2+) signalling by (1) the src kinase inhibitor PP2, (2) the PLC inhibitor U73122, and (3) the cyclic adenosine diphosphoribose (cADPR) antagonist 7-deaza-8-Br-cADPR indicate the involvement of src tyrosine kinases and the Ca(2+)-releasing second messengers D-myo-inositol 1,4,5-trisphosphate (InsP3) and cADPR.  相似文献   

4.
Guse AH 《The FEBS journal》2005,272(18):4590-4597
Cyclic ADP-ribose (cADPR) is a Ca2+ mobilizing second messenger found in various cell types, tissues and organisms. Receptor-mediated formation of cADPR may proceed via transmembrane shuttling of the substrate NAD and involvement of the ectoenzyme CD38, or via so far unidentified ADP-ribosyl cyclases located within the cytosol or in internal membranes. cADPR activates intracellular Ca2+ release via type 2 and 3 ryanodine receptors. The exact molecular mechanism, however, remains to be elucidated. Possibilities are the direct binding of cADPR to the ryanodine receptor or binding via a separate cADPR binding protein. In addition to Ca2+ release, cADPR also evokes Ca2+ entry. The underlying mechanism(s) may comprise activation of capacitative Ca2+ entry and/or activation of the cation channel TRPM2 in conjunction with adenosine diphosphoribose. The development of novel cADPR analogues revealed new insights into the structure-activity relationship. Substitution of either the northern ribose or both the northern and southern ribose resulted in much simpler molecules, which still retained significant biological activity.  相似文献   

5.
We previously showed that 3"-deoxy-cyclic ADP-carbocyclic-ribose (3"-deoxy-cADPcR, 3) is a stable and highly potent analogue of cyclic ADP-ribose (cADPR, 1), a Ca2+ -mobilizing second messenger. From these results, we newly designed another 3"-modified analogues of cADPcR and identified the N1-"xylo"-type carbocyclic analogue, i.e., cADPcX (4), as one of the most potent cADPR-related compounds reported so far.  相似文献   

6.
We previously showed that 3'-deoxy-cyclic ADP-carbocyclic-ribose (3'-deoxy-cADPcR, 4) is a stable and highly potent analogue of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. From these results, we designed and synthesized other 3'-modified analogues of cADPcR having a substituent at the 8-position and found that this modification at the 8-position made them partial agonists. Among these compounds, 8-NH(2)-3'-deoxy-cADPcR (10) was identified as a potent partial agonist with an EC(50) value of 17 nM.  相似文献   

7.
The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca2+-permeable cation channel that is activated by intracellular adenosine diphosphoribose (ADPR) binding to the channel's enzymatic Nudix domain. Channel activity is also seen with nicotinamide dinucleotide (NAD+) and hydrogen peroxide (H2O2), but their mechanisms of action remain unknown. Here, we identify cyclic adenosine diphosphoribose (cADPR) as an agonist of TRPM2 with dual activity: at concentrations above 100 microM, cADPR can gate the channel by itself, whereas lower concentrations of 10 microM have a potentiating effect that enables ADPR to gate the channel at nanomolar concentrations. ADPR's breakdown product adenosine monophosphate (AMP) specifically inhibits ADPR, but not cADPR-mediated gating of TRPM2, whereas the cADPR antagonist 8-Br-cADPR exhibits the reverse block specificity. Our results establish TRPM2 as a coincidence detector for ADPR and cADPR signaling and provide a functional context for cADPR as a second messenger for Ca2+ influx.  相似文献   

8.
The elevation of the cytosolic and nuclear Ca(2+) concentration is a fundamental signal transduction mechanism in almost all eukaryotic cells. Interestingly, three Ca(2+)-mobilising second messengers, D-myo-inositol 1,4,5-trisphosphate (InsP(3)), cyclic adenosine diphosphoribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP(+)) were identified in a phylogenetically wide range of different organisms. Moreover, in an as yet very limited number of cell types, sea urchin eggs, mouse pancreatic acinar cells, and human Jurkat T-lymphocytes, all three Ca(2+)-mobilising ligands have been shown to be involved in the generation of Ca(2+) signals. This situation raises the question why during evolution all three messengers have been conserved in the same cell type. From a theoretical point of view the following points may be considered: (i) redundant mechanisms ensuring intact Ca(2+) signalling even if one system does not work, (ii) the need for subcellularly localised Ca(2+) elevations to obtain a certain physiological response of the cell, and (iii) tight control of a physiological response of the cell by a temporal sequence of Ca(2+) signalling events. These theoretical considerations are compared to the current knowledge regarding the three messengers in sea urchin eggs, mouse pancreatic acinar cells, and human Jurkat T lymphocytes.  相似文献   

9.
Two side-chain cyclic lactam analogues of the 4-11 fragment of alpha-melanocyte-stimulating hormone (alpha-MSH), Ac-[Nle4,D-Orn5,Glu8]alpha-MSH4-11-NH2 and Ac-[Nle4,D-Orn5,D-Phe7,Glu8]alpha-MSH4-11-NH2, were prepared on p-methylbenzhydrylamine resin by using a combination of N alpha-Boc and N alpha-Fmoc synthetic strategies with diphenyl phosphorazidate mediated cyclization. The melanotropin activities of these two analogues were examined and compared relative to those of alpha-MSH, Ac-[Nle4]alpha-MSH4-11-NH2, and Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. In the frog (Rana pipiens) skin bioassay, the L-Phe7 17-membered ring cyclic analogue was slightly more potent than the linear Ac-[Nle4]alpha-MSH4-11-NH2 and exhibited prolonged melanotropic bioactivity (greater than or equal to 4 h). In this same assay, the D-Phe7 cyclic analogue was more than 100-fold less potent than the L-Phe cyclic analogue and was 10,000 times less potent than linear Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. In the lizard skin (Anolis carolinensis) bioassay, the L-Phe7 cyclic analogue was 100-fold less potent than Ac-[Nle4]alpha-MSH4-11-NH2, while the D-Phe7 cyclic analogue was 10,000-fold less potent than both Ac-[Nle4]alpha-MSH4-11-NH2 and the D-Phe7 linear derivative Ac-[Nle4,D-Phe7]alpha-MSH4-11-NH2. The solution conformation of these two cyclic analogues in dimethyl sulfoxide-d6 was examined by 1D and 2D 500-MHz 1H NMR spectroscopy. Our analysis suggests an H bond stabilized C10 (or C13) turn for the D-Phe7 cyclic structure while the L-Phe7 analogue is more conformationally flexible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Galione A  Churchill GC 《Cell calcium》2002,32(5-6):343-354
The discovery of cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) as Ca(2+) releasing messengers has provided additional insight into how complex Ca(2+) signalling patterns are generated. There is mounting evidence that these molecules along with the more established messenger, myo-inositol 1,4,5-trisphosphate (IP(3)), have a widespread messenger role in shaping Ca(2+) signals in many cell types. These molecules have distinct structures and act on specific Ca(2+) release mechanisms. Emerging principles are that cADPR enhances the Ca(2+) sensitivity of ryanodine receptors (RYRs) to produce prolonged Ca(2+) signals through Ca(2+)-induced Ca(2+) release (CICR), while NAADP acts on a novel Ca(2+) release mechanism to produce a local trigger Ca(2+) signal which can be amplified by CICR by recruiting other Ca(2+) release mechanisms. Whilst IP(3) and cADPR mobilise Ca(2+) from the endoplasmic reticulum (ER), recent evidence from the sea urchin egg suggests that the major NAADP-sensitive Ca(2+) stores are reserve granules, acidic lysosomal-related organelles.In this review we summarise the role of multiple Ca(2+) mobilising messengers, Ca(2+) release channels and Ca(2+) stores, and the interplay between them, in the generation of specific Ca(2+) signals. Focusing upon cADPR and NAADP, we discuss how cellular stimuli may draw upon different combinations of these messengers to produce distinct Ca(2+) signalling signatures.  相似文献   

11.
Cyclic ADP-ribose mobilizes intracellular Ca2+ in a variety of cells. To elucidate the nature of the interaction between the C3' substituent of cADP-ribose and the cADPR receptor, three analogues of NAD+ modified in the adenosine ribase (xyloNAD+ 3'F-xyloNAD+ and 3'F-NAD+ were chemically synthesised from D-xylose and adenine starting materials. 3'F-NAD+ was readily converted to cyclic 3'F-ADP ribose by the action of the cyclase enzyme derived from the mollusc Aplysia californica. XyloNAD+ and 3'F-xyloNAD+ were cyclised only reluctantly and in poor yield to afford unstable cyclic products. Biological evaluation of cyclic 3'F-ADP ribose for calcium release in sea urchin egg homogenate gave an EC(50) of 1.5+/-0.5 microM. This high value suggests that the ability of the C3' substituent to donate a hydrogen bond is crucial for agonism.  相似文献   

12.
Important questions remain concerning how elevated blood glucose levels are coupled to insulin secretion from pancreatic beta cells and how this process is impaired in type 2 diabetes. Glucose uptake and metabolism in beta cells cause the intracellular Ca(2+) concentration ([Ca(2+)](i)) to increase to a degree necessary and sufficient for triggering insulin release. Although both Ca(2+) influx and Ca(2+) release from internal stores are critical, the roles of inositol 1,4,5-trisphosphate (IP(3)) and cyclic adenosine dinucleotide phosphate ribose (cADPR) in regulating the latter have proven equivocal. Here we show that glucose also increases [Ca(2+)](i) via the novel Ca(2+)-mobilizing agent nicotinic acid adenine dinucleotide phosphate (NAADP) in the insulin-secreting beta-cell line MIN6. NAADP binds to specific, high-affinity membrane binding sites and at low concentrations elicits robust Ca(2+) responses in intact cells. Higher concentrations of NAADP inactivate NAADP receptors and attenuate the glucose-induced Ca(2+) increases. Importantly, glucose stimulation increases endogenous NAADP levels, providing strong evidence for recruitment of this pathway. In conclusion, our results support a model in which NAADP mediates glucose-induced Ca(2+) signaling in pancreatic beta cells and are the first demonstration in mammalian cells of the presence of endogenous NAADP levels that can be regulated by a physiological stimulus.  相似文献   

13.
J T Slama  A M Simmons 《Biochemistry》1991,30(9):2527-2534
Two new photoactive analogues of oxidized nicotinamide adenine dinucleotide (NAD+) which are resistant to cleavage by NAD glycohydrolase were synthesized and characterized. The beta-D-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ was replaced with a 2,3-dihydroxycyclopentane ring forming a carbocyclic dinucleotide analogue. Photoreactivity was achieved by the incorporation of an azido group at the 8-position of the adenosyl ring. The previously published synthesis of carbocyclic pyridine dinucleotide analogues [Slama, J. T., & Simmons, A. M. (1988) Biochemistry 27, 183] was modified by resolving the carbocyclic 1-aminoribose analogues and producing optically pure (+)-(1S)- or (-)-(1R)-4 beta-amino-2 alpha,3 alpha-dihydroxy-1 beta-cyclopentanemethanol. Each of these was converted to the corresponding carbocyclic nicotinamide 5'-nucleotide analogue and coupled with 8-azidoadenosine 5'-monophosphate. Two photoactive and isomeric NAD+ analogues were thus prepared. 8-Azidoadenosyl carba-NAD is the analogue in which D-dihydroxycyclopentane is substituted for the D-ribose of the nicotinamide nucleoside moiety. 8-Azido-adenosyl pseudocarba-NAD contains the L-carbocycle in place of the D-ribotide ring. 8-Azidoadenosyl carba-NAD was shown to inhibit the NAD glycohydrolase from Bungarus fasciatus venom competitively with an inhibitor dissociation constant of 187 microM. 8-Azidoadenosyl pseudocarba-NAD was shown to inhibit the same enzyme competitively with a Ki of 73 microM. The superior NADase inhibitor, 8-azidoadenosyl pseudocarba-NAD, was characterized kinetically and shown to fulfill the criteria required of a specific active site directed photoaffinity probe. Irradiation of mixtures of the photoprobe and NAD glycohydrolase with short-wave ultraviolet light resulted in the rapid and irreversible loss of enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Shutes A  Phillips RA  Corrie JE  Webb MR 《Biochemistry》2002,41(11):3828-3835
Novel guanine nucleotide analogues have been used to investigate the role of Mg(2+) in nucleotide release and binding with the small G protein rac. The fluorescent analogues have 7-(ethylamino)-8-bromocoumarin-3-carboxylic acid attached to the 3'-position of the ribose via an ethylenediamine linker. This modification has only small effects on the interaction with rac. There are large fluorescence changes on binding of the triphosphate to rac, on hydrolysis, and then on release of the diphosphate. Furthermore, the fluorescence is sensitive to the presence of Mg(2+) in the active site. Using this signal, it was shown that, for a variety of conditions, the nucleotides dissociate by a two-step mechanism. Mg(2+) is released first followed by the nucleotide. With the diphosphate, Mg(2+) is fast and nucleotide release slow. For the fluorescent GMPPNP analogue, the rate of dissociation is limited by Mg(2+) release. In the latter case, Mg(2+) binds tightly with a K(d) of 61 nM, whereas for the diphosphate the K(d) is 11 microM (30 degrees C, pH 7.6).  相似文献   

15.
16.
The ability of O(2) levels to regulate Ca(2+) signalling in non-excitable cells is poorly understood, yet crucial to our understanding of Ca(2+)-dependent cell functions in physiological and pathological situations. Here, we demonstrate that hypoxia mobilizes Ca(2+) from an intracellular pool in primary cultures of cortical astrocytes. This pool can also be mobilized by bradykinin, which acts via phospholipase C and inositol trisphosphate production. By contrast, hypoxic Ca(2+) mobilization utilizes ryanodine receptors, which appear to be either present on the same intracellular pool, or on a separate but functionally coupled pool. Hypoxic activation of ryanodine receptors requires formation of cyclic ADP ribose, since hypoxic Ca(2+) mobilization was fully prevented by nicotinamide (which inhibits ADP ribosyl cyclase) or by 8-Br-cADP ribose, an antagonist of cyclic ADP ribose. Our results demonstrate for the first time the involvement of cyclic ADP ribose in hypoxic modulation of Ca(2+) signalling in the central nervous system, and suggest that this modulator of ryanodine receptors may play a key role in the function of astrocytes under conditions of fluctuating O(2) levels.  相似文献   

17.
Analysis of subcellular calcium signals in T-lymphocytes   总被引:4,自引:0,他引:4  
Subcellular Ca(2+) signals were analysed in Jurkat and peripheral human T-lymphocytes by confocal Ca(2+) imaging employing an off-line deconvolution method. Stimulation of the TCR/CD3 complex in T-lymphocytes resulted in a series of subcellular pacemaker Ca(2+) signals preceding the first global Ca(2+) signal. The pacemaker signals occurred in a cytosolic "trigger" zone, which is localised close to the plasma membrane. The pacemaker signals were almost independent of extracellular Ca(2+) as shown by measurements in the absence of extracellular Ca(2+), or in the presence of the Ca(2+) channel blocker SK-F 96365. Analysis of the confocal Ca(2+) images revealed characteristic amplitudes of 82 +/- 30 to 109 +/- 21 nM, signal diameters between 2.5 +/- 0.9 and 3.5 +/- 1.5 microm and frequencies between 0.235 and 0.677 s(-1). Taken together, our data constitute the first analysis of subcellular Ca(2+) signals in T cells and indicate that the pacemaker Ca(2+) release events, which are necessary for the development of the global Ca(2+) signal, are composed of Ca(2+) release both from inositol 1,4,5-trisphosphate- and ryanodine receptors.  相似文献   

18.
In this investigation we use a "dyspedic" myogenic cell line, which does not express any ryanodine receptor (RyR) isoform, to examine the local Ca(2+) release behavior of RyR3 and RyR1 in a homologous cellular system. Expression of RyR3 restored caffeine-sensitive, global Ca(2+) release and causes the appearance of relatively frequent, spontaneous, spatially localized elevations of [Ca(2+)], as well as occasional spontaneous, propagating Ca(2+) release, in both intact and saponin-permeabilized myotubes. Intact myotubes expressing RyR3 did not, however, respond to K(+) depolarization. Expression of RyR1 restored depolarization-induced global Ca(2+) release in intact myotubes and caffeine-induced global release in both intact and permeabilized myotubes. Both intact and permeabilized RyR1-expressing myotubes exhibited relatively infrequent spontaneous Ca(2+) release events. In intact myotubes, the frequency of occurrence and properties of these RyR1-induced events were not altered by partial K(+) depolarization or by application of nifedipine, suggesting that these RyR1 events are independent of the voltage sensor. The events seen in RyR1-expressing myotubes were spatially more extensive than those seen in RyR3-expressing myotubes; however, when analysis was limited to spatially restricted "Ca(2+) spark"-like events, events in RyR3-expressing myotubes were larger in amplitude and duration compared with those in RyR1. Thus, in this skeletal muscle context, differences exist in the spatiotemporal properties and frequency of occurrence of spontaneous release events generated by RyR1 and RyR3. These differences underscore functional differences between the Ca(2+) release behavior of RyR1 and RyR3 in this homologous expression system.  相似文献   

19.
Fatty acids (FA) with at least 12 carbon atoms increase intracellular Ca(2+) ([Ca(2+)](i)) to stimulate cholecystokinin release from enteroendocrine cells. Using the murine enteroendocrine cell line STC-1, we investigated whether candidate intracellular pathways transduce the FA signal, or whether FA themselves act within the cell to release Ca(2+) directly from the intracellular store. STC-1 cells loaded with fura-2 were briefly (3 min) exposed to saturated FA above and below the threshold length (C(8), C(10), and C(12)). C(12), but not C(8) or C(10), induced a dose-dependent increase in [Ca(2+)](i), in the presence or absence of extracellular Ca(2+). Various signaling inhibitors, including d-myo-inositol 1,4,5-triphosphate receptor antagonists, all failed to block FA-induced Ca(2+) responses. To identify direct effects of cytosolic FA on the intracellular Ca(2+) store, [Ca(2+)](i) was measured in STC-1 cells loaded with the lower affinity Ca(2+) dye magfura-2, permeabilized by streptolysin O. In permeabilized cells, again C(12) but not C(8) or C(10), induced release of stored Ca(2+). Although C(12) released Ca(2+) in other permeabilized cell lines, only intact STC-1 cells responded to C(12) in the presence of extracellular Ca(2+). In addition, 30 min exposure to C(12) induced a sustained elevation of [Ca(2+)](i) in the presence of extracellular Ca(2+), but only a transient response in the absence of extracellular Ca(2+). These results suggest that at least two FA sensing mechanisms operate in enteroendocrine cells: intracellularly, FA (>/=C(12)) transiently induce Ca(2+) release from intracellular Ca(2+) stores. However, they also induce sustained Ca(2+) entry from the extracellular medium to maintain an elevated [Ca(2+)](i).  相似文献   

20.
Microinjection of human Jurkat T-lymphocytes with nicotinic acid adenine dinucleotide phosphate (NAADP(+)) dose-dependently stimulated intracellular Ca(2+)-signaling. At a concentration of 10 nM NAADP(+) evoked repetitive and long-lasting Ca(2+)-oscillations of low amplitude, whereas at 50 and 100 nM, a rapid and high initial Ca(2+)-peak followed by trains of smaller Ca(2+)-oscillations was observed. Higher concentrations of NAADP(+) (1 and 10 microM) gradually reduced the initial Ca(2+)-peak, and a complete self-inactivation of Ca(2+)-signals was seen at 100 microM. The effect of NAADP(+) was specific as it was not observed with nicotinamide adenine dinucleotide phosphate. Both inositol 1,4, 5-trisphosphate- and cyclic adenosine diphosphoribose-mediated Ca(2+)-signaling were efficiently inhibited by coinjection of a self-inactivating concentration of NAADP(+). Most importantly, microinjection of a self-inactivating concentration of NAADP(+) completely abolished subsequent stimulation of Ca(2+)-signaling via the T cell receptor/CD3 complex, indicating that a functional NAADP(+) Ca(2+)-release system is essential for T-lymphocyte Ca(2+)-signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号