首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A serum-free clonal density growth assay was developed for the quantification of the biological activity of human recombinant insulin-like growth factor I (IGF-I). The assay measures IGF-I stimulated growth of Balb/c 3T3 cells cultured over 4 d on poly-d-lysine-coated plastic surfaces in a serum-free medium formulation composed of a 1∶1 (vol/vol) mixture of Ham's F12 and Dulbecco's modified Eagle's media, supplemented with 3.0 ng/ml bovine basic fibroblast growth factor (bFGF), 10 μg/ml human transferrin, 100 μg/ml ovalbumin, and 1.0 μM dexamethanose. Low-temperature trypsinization of serum-supplemented stock cultures combined with the use of poly-d-lysine-coated plates made it unnecessary to use serum or fibronectin to promote cell attachment and survival. Serum-free growth conditions were optimized with respect to the concentrations of the supplements. Addition of IGF-I resulted in 3.5-fold more cells than control cultures without IGF-I after 4 d. Deletion of bFGF resulted in no IGF-I stimulation of growth. The concentrations of various preparations of IGF-I required to achieve one-half maximal stimulation of cell number (ED50), ranged between 1.25 and 4.7 ng/ml. In parallel assays, IGF-I was 6.6 times more potent than human recombinant insulin-like growth factor II and 32 times more potent than insulin. When cells were seeded into medium containing IGF-I, transferrin, ovalbumin, and dexamethasone but no bFGF, growth was minimal. Dose-response addition of bFGF showed an ED50, of 0.9 ng/ml. The methods reported are useful to monitor the biological potency of recombinant and natural-source growth factors as well as providing a new means of studying the multiple growth factor requirements of Balb/c 3T3 cells in cultures. This work was supported by a contract from IMCERA Bioproducts, Inc.  相似文献   

2.
The hypothesis was tested that bovine preantral follicles can be stimulated to grow in vitro by FSH and by the mitogens, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), but not by transforming growth factor-beta (TGFbeta), which generally inhibits EGF and bFGF action. Preantral follicles, 60 to 179 mum in diameter, were isolated from fetal ovaries by treatment with collagenase and DNase and cultured for 6 d in serum-free medium, with or without FSH and growth factors. Basic FGF (50 ng/ml), and to a lesser extent FSH (100 ng/ml) and EGF (50 ng/ml), stimulated thymidine incorporation by granulosa cells in bovine preantral follicles compared to control cultures (8-, 4- and 2.5-fold the labeling index of the controls; P < 0.05). Alone TGFbeta (10 ng/ml) had no effect on (3)H-thymidine incorporation, but it completely inhibited the bFGF- but not the FSH-stimulated increase in the labeling index and mean follicular diameter of preantral follicles (P < 0.05). By the end of the culture period oocytes in most treatments had degenerated, and the few surviving oocytes were in preantral follicles cultured with FSH or bFGF. Progesterone accumulation was greater (P < 0.05) in the presence of FSH (100 ng/ml) or EGF (50 ng/ml) than with bFGF, TGFbeta or control medium. Basic FGF strongly inhibited the effect of FSH on progesterone secretion (P < 0.05). Only FSH stimulated the conversion of exogenous testosterone to estradiol and both bFGF and TGFbeta markedly inhibited FSH-stimulated estradiol accumulation. These results indicate that proliferation of granulosa cells of bovine preantral follicles can be stimulated by bFGF, FSH and EGF, whereas TGFbeta inhibits growth, and that they are steroidogenically active in culture. Basic FGF and TGFbeta antagonize FSH-stimulated steroid production by granulosa cells of cultured bovine preantral follicles.  相似文献   

3.
D Noff  S Pitaru  N Savion 《FEBS letters》1989,250(2):619-621
The role of basic fibroblast growth factor (bFGF) in the proliferation and differentiation of rat bone marrow cells in culture was studied. bFGF stimulated [3H]thymidine incorporation into these cells by 4-fold at a concentration of 0.3 ng/ml and half-maximal effect was observed at a concentration of 15 pg/ml. In addition to its mitogenic effect, bFGF stimulated alkaline phosphatase activity by 3.6-fold. Continuous treatment with bFGF (for 21 days) resulted in a 6.3-fold increase in the culture dish surface area covered by bone-like mineralized tissue. Maximal bone-like tissue formation was observed in the presence of 3 ng/ml bFGF with half-maximal effect at a concentration of 0.3 ng/ml. These results indicate the possible role of bFGF in the proliferation of osteogenic rat bone marrow cells and their differentiation into cells of osteoblast-like phenotype.  相似文献   

4.
The possible role of peptide growth factors in mammalian intrauterine cell growth has been investigated using primary cultures of undifferentiated mesenchymal cells from 11-day mouse embryo limb buds. When grown as monolayer cultures, proliferation is greatly favored by high cell densities. In medium containing 0.2% serum, purified epidermal growth factor (EGF), fibroblast growth factor (FGF), multiplication stimulating activity (MSA), insulin, and somatomedin-C (Sm-C) do not increase cell growth, but a 30-40,000 molecular weight component of mouse fetal liver conditioned medium is stimulatory. On the other hand, when limb bud cells are grown as high density or micromass cultures, a method which better approximates in vivo growth conditions, all of the purified growth factors tested stimulate cell growth significantly. These growth factors have additive effects when used in combination, the best stimulation being observed with liver medium (10% v/v), EGF (10 ng/ml), FGF (200 ng/ml), and either insulin (1 microgram/ml) or Sm-C (20 ng/ml). We conclude that the response of limb bud cells to growth stimulation is influenced by the manner in which the cells are cultured and that at least four different growth factors are required for optimal in vitro proliferation. One of these, the active component of liver medium, appears to be a previously uncharacterized growth factor.  相似文献   

5.
Several cell types have been shown to secrete insulin-like growth factor binding proteins (IGF-BP) in vitro. Since IGF-BP influences cell responsiveness to IGF, three muscle cell types were investigated to determine if they produced IGF-BP and to identify factors that regulate IGF-BP secretion. Porcine smooth muscle cells (pSMC), rat L6 skeletal muscle cells, and mouse BC3H-1 myocytes were used. IGF-BP activity in serum-free conditioned media was quantitated with a polyethylene glycol precipitation method. All three cell types secreted IGF-BP activity into the medium. Insulin was a potent stimulant of IGF-BP secretion for each cell type. Specifically, 1 microgram/ml insulin increased the IGF-BP concentration in conditioned media from 10.5 +/- 1.3 to 15.0 +/- 1.5 ng/ml in confluent L6 myotubes, from 42.5 +/- 11.1 to 90.5 +/- 9.8 ng/ml in confluent BC3H-1 cells, and from 2.1 +/- 0.1 to 3.8 +/- 0.1 ng/ml in confluent pSMC. L6 myotubes required more insulin (8 micrograms/ml) to achieve a half-maximal stimulation of IGF-BP secretion than confluent pSMC, differentiation deficient L6.DD cells or BC3H-1 cells, where half-maximal stimulation occurred between 125 and 300 ng/ml. L6 myoblasts were 40-fold more sensitive to insulin stimulation of IGF-BP secretion than L6 myotubes. IGF-I, although it interferes with the assay and thereby lowers the amount of detectable IGF-BP, stimulated the secretion of IGF-BP from all three cell types. Dexamethasone, (10(-7) M) decreased IGF-BP secretion into the media by approximately 50% for all three cell types. Affinity cross-linking and ligand blotting of 125I-IGF-I to conditioned media from each cell type showed (IGF-BP)-(IGF-I) complexes with molecular weights ranging 32-40 kDa (24-32 kDa for IGF-BP and 7.5 kDa for IGF-I). Insulin stimulated cell proliferation for both L6 myoblasts and BC3H-1 myocytes. This cell proliferative response was associated with an increase in IGF-BP secretion/cell in response to insulin. In contrast dexamethasone decreased L6 myoblast proliferation and decreased IGF-BP secretion/cell. We conclude that IGF-BP is secreted by each muscle cell type and that the state of cellular differentiation or quiescence influences its basal and insulin-stimulated secretion. Insulin and IGF-I are stimulators of IGF-BP secretion, whereas dexamethasone inhibits IGF-BP secretion. Because these hormones control muscle cell growth and differentiation, the IGF-BP may play an important regulatory role in these processes.  相似文献   

6.
Fibroblasts represent one of the in vivo sites of insulin-like growth factor-I (IGF-I) production. In this study rat dermal fibroblasts in culture were used as a model system to assess the effect of activation of protein kinase-C on the levels of the mRNAs encoding IGF-I and another growth factor, basic fibroblast growth factor (bFGF). IGF-I and bFGF mRNA levels were determined using a solution hybridization/RNase protection assay. Treatment of cells in serum-free medium containing 0.25% BSA (MEM + BSA) with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) decreased IGF-I and increased bFGF mRNA levels in a time- and dose-dependent fashion. The peak effect of 100 nM PMA on IGF-I mRNA levels occurred at 9 h, whereas the peak effect on bFGF mRNA levels occurred after 3 h of incubation. In dose-response studies, half-maximal inhibition of IGF-I mRNA levels was achieved with approximately 0.08 nM PMA, while half-maximal stimulation of bFGF mRNA levels was achieved with approximately 3 nM PMA. Inhibition of protein synthesis with cycloheximide abrogated the effect of PMA on bFGF mRNA levels, but only partially inhibited the effect of PMA on IGF-I mRNA levels. Studies employing sphingosine or staurosporine to inhibit protein kinase-C or preincubation in high doses of PMA to down-regulate protein kinase-C suggested that the effect of PMA on IGF-I and bFGF mRNA levels was mediated by activation of protein kinase-C, although both staurosporine and sphingosine had independent effects on the levels of these mRNAs and down-regulation of protein kinase-C had a sustained effect on IGF-I mRNA levels. Ligands known to activate protein kinase-C were then tested. Treatment of cells with 100 micrograms/ml of the synthetic diacylglycerol 1-oleoyl-2-acetyl-sn-glycerol decreased IGF-I mRNA levels to 25% and increased bFGF mRNA levels to 520% of the level present in cells maintained in MEM + BSA. Treatment of cells with thrombin or bradykinin also decreased IGF-I mRNA levels and increased bFGF mRNA levels, but whereas the effect of thrombin on IGF-I mRNA levels was marked, the effect of bradykinin was minimal, and whereas the effect of thrombin on bFGF mRNA levels was sustained, the effect of bradykinin was transient.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We examined the effect of basic fibroblast growth factor (bFGF) on the activation of phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like MC3T3-E1 cells. bFGF stimulated both the formations of choline (EC50 was 30 ng/ml) and inositol phosphates (EC50 was 10 ng/ml). Calphostin C, an inhibitor of protein kinase C (PKC), had little effect on the bFGF-induced formation of choline. bFGF stimulated the formation of choline also in PKC down regulated cells. Genistein and methyl 2,5-dihydroxycinnamate, inhibitors of protein tyrosine kinases, significantly suppressed the bFGF-induced formation of choline. Sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, enhanced the bFGF-induced formation of choline. In vitro kinase assay for FGF receptors revealed that FGF receptor 1 and 2 were autophosphorylated after FGF stimulation. bFGF dose-dependently stimulated DNA synthesis of these cells. These results strongly suggest that bFGF activates phosphatidylcholine-hydrolyzing phospholipase D through the activation of tyrosine kinase, but independently of PKC activated by phosphoinositide hydrolysis in osteoblast-like cells. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

9.
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF exhibits potent mitogenic activity for a variety of epithelial cell types but is distinct from other known FGFs in that it is not mitogenic for fibroblasts or endothelial cells. We report saturable specific binding of 125I-KGF to surface receptors on intact Balb/MK mouse epidermal keratinocytes. 125I-KGF binding was completed efficiently by acidic FGF (aFGF) but with 20-fold lower efficiency by basic FGF (bFGF). The pattern of 125I-acidic FGF binding and competition on Balb/MK keratinocytes and NIH/3T3 fibroblasts suggests that these cell types possess related but distinct FGF receptors. Scatchard analysis of 125I-KGF binding suggested major and minor high affinity receptor components (KD = 400 and 25 pM, respectively) as well as a third high capacity/low affinity heparin-like component. Covalent affinity cross-linking of 125I-KGF to its receptor on Balb/MK cells revealed two species of 115 and 140 kDa. KGF also stimulated the rapid tyrosine phosphorylation of a 90-kDa protein in Balb/MK cells but not in NIH/3T3 fibroblasts. Together these results indicate that Balb/MK keratinocytes possess high affinity KGF receptors to which the FGFs may also bind. However, these receptors are distinct from the receptor(s) for aFGF and bFGF on NIH/3T3 fibroblasts, which fail to interact with KGF.  相似文献   

10.
The effects of fibroblast growth factor (FGF) and nerve growth factor (NGF) on DNA synthesis and insulin secretion were studied in 4-5-day cultures of the isolated neonatal rat islets. FGF (0.1 ng/ml) stimulated significantly the incorporation of 3H-thymidine into DNA of the isolated islets, but failed to change either insulin content in the islets or the rate of insulin secretion. NGF (0.1-1000 ng/ml) did not affect the above parameters. The responses of the islets of Langerhans to increasing concentrations of glucose and isobutylmethylxanthine were not modified after prolonged exposure to NGF. The role of FGF and NGF in the regulation of proliferation and secretory process in pancreatic islet cells is discussed.  相似文献   

11.
Human acidic and basic fibroblast growth factors (aFGF and bFGF) inhibit epidermal growth factor (EGF) receptor binding in mouse Swiss 3T3 cells. Scatchard analysis indicates that aFGF and bFGF cause a decrease in the high affinity EGF receptor population, similar to that observed for activators of protein kinase C such as phorbol esters, platelet-derived growth factor (PDGF) and bombesin. However, unlike phorbol esters, aFGF and bFGF inhibit EGF binding in protein kinase C-deficient cells. The time course and dose response of inhibition of EGF binding by both aFGF and bFGF are very similar, with an ID50 of approximately 0.10 ng/ml. In contrast to bombesin but like PDGF, neither aFGF nor bFGF act on the EGF receptor through a pertussis toxin-sensitive G protein. These results indicate that both acidic and basic FGF depress high affinity EGF binding in Swiss 3T3 cells with similar potency through a protein kinase C/Gi-independent pathway.  相似文献   

12.
The mitogenic activity of somatomedin-C/insulinlike growth factor-I (SM-C/IGF-I) appears to be greatly influenced by cell culture conditions, especially the presence of other growth factors and nutrients in the culture medium. To investigate the effect of cell density on SM-C/IGF-I activity, we have evaluated SM-C/IGF-I binding and stimulation of DNA synthesis and cell replication as a function of cell density in cultured human fibroblast monolayers. At fibroblast concentrations of 2.7 X 10(5) and 1.48 X 10(6) cells per 60-mm dish, specific binding of [125I]SM-C/IGF-I per 10(6) cells was 170% higher in sparse than dense monolayers (9.3% vs. 3.4%). Increased binding in sparse monolayers was attributable to approximately twice as many receptors in sparse as in dense cells (31,000 vs. 16,000 sites per cell), as well as to a modest increase in the affinity constant. Similarly, half-maximal stimulation of [methyl-3H]thymidine incorporation was achieved at SM-C/IGF-I concentrations of 2.5 ng/ml in sparse cells but required 20 ng/ml in dense cells. Although this required only 45% occupancy of membrane receptors on sparse cells, and almost 80% occupancy on dense cells, the total number of occupied receptors was similar in both sparse and dense cells (approximately 13,000 receptors/cell for half-maximal stimulation). The presence of increased numbers of "functional receptors" on sparse fibroblasts thus results in enhanced sensitivity to SM-C/IFG-I stimulation of DNA synthesis and cell replication. Progressive decreases in the number of functional receptors, secondary to cell crowding, may contribute to density-dependent inhibition of fibroblast growth.  相似文献   

13.
Since we had previously shown that both basic fibroblast growth factor (bFGF) and testosterone stimulate the growth of mouse mammary carcinoma cells (SC-3) in serum-free culture, we tested the effect of bFGF or testosterone on FGF receptor mRNA levels. Northern blot analyses revealed that stimulation with bFGF resulted in a 5-fold increase in FGF receptor mRNA levels at 6-8 h followed by a decline to the unstimulated levels at 24 h. Simultaneous addition of cycloheximide blocked bFGF-induced accumulation of FGF receptor mRNA, although exposure of SC-3 cells to cycloheximide alone caused marginal increase in its basal level. Neither phorbol ester nor forskolin stimulated FGF receptor mRNA expression, but testosterone could raise FGF receptor mRNA levels. To obtain the maximum stimulation, however, testosterone required the longer stimulation period (12 h) than bFGF, suggesting that testosterone-induced FGF receptor mRNA accumulation is mediated through an induction of FGF-like growth factor.  相似文献   

14.
In rat osteosarcoma (ROS 17/2.8) cells, which express osteoblastic features in culture, basic fibroblast growth factor (bFGF) reduces the level of alkaline phosphatase, type I collagen, and osteocalcin mRNA and increases osteopontin mRNA, independent of growth stimulation. The fibroblast growth factor (FGF) effects are dose dependent (EC50 about 6 pM) and are detected 24 h after addition of the growth factor. bFGF also reduces parathyroid hormone-stimulatable adenylate cyclase and alkaline phosphatase activity in these cells. Concomitant treatment with pertussis toxin (20 ng/ml) opposes the FGF effects. Although cyclic AMP elevating agents mimic pertussis toxin action on some parameters, they produce opposite effects on others, indicating that antagonism between pertussis toxin and bFGF is not mediated by cyclic AMP. bFGF caused a small reduction in steady state NAD-dependent ADP-ribosylation and had no detectable effects on the steady-state levels of the Gi alpha (alpha subunit of the inhibitory G protein) 1, 2, and 3, visualized with specific antibodies in these cells. Although the site of interaction of pertussis toxin and FGF remains to be determined, the findings presented here suggest separate control of growth and differentiation by bFGF and show that pertussis toxin treatment can modulate differentiation in these cells, presumably via Gi proteins.  相似文献   

15.
Although increased free intracellular calcium (Cai) may be one of the main regulators of cell growth and differentiation, studies in cell populations have implied that not all growth factors produce Cai increases. In order to examine in more detail whether Cai increases were related to mitogenesis, we used digital image analysis of intracellular Fura-2 fluorescence to measure Cai in individual BALB/c 3T3 cells stimulated with either platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF). We found that PDGF induced larger and more prolonged Cai increases than FGF did, but that both growth factors induced an initial rapid increase in Cai (less than 2 min) followed by a later sustained increase (greater than 20 min). Only the prolonged Cai increase required extracellular calcium. Following PDGF treatment (1-8 units/ml), the percentage of cells with a large peak Cai increase (greater than twofold) correlated with the percentage of cells made competent (subsequent growth in 1% platelet-poor-plasma). In contrast, purified bovine basic FGF (200-800 pg/ml) and recombinant human acidic FGF (10-300 ng/ml) produced peak Cai increases that were not directly correlated with mitogenesis. In addition, concentrations of intracellular Quin 2 that inhibited Cai transients also inhibited PDGF stimulation but not FGF stimulation of mitogenesis. Thus, Cai increases are necessary for mitogenesis in BALB/c 3T3 cells stimulated by PDGF, but not that stimulated by FGF.  相似文献   

16.
Glucocorticoids act synergistically with insulin-like growth factor I (IGF-I) to stimulate DNA synthesis and replication of cultured human fibroblasts. In the present study, we further define glucocorticoid and IGF-I interactive effects on human fibroblast metabolism and growth. IGF-I stimulated dose-dependent increases in early metabolic events. Half-maximal effectiveness was seen at 5–8 ng/ml IGF-I, with mean maximal responses of 1.5-, 2-, and 6-fold for [3H]2-deoxyglucose uptake, [14C]glucose incorporation, and [14C]aminoisobutyric acid (AIB) uptake, respectively. A 48-hour preincubation with 10?7 M dexamethasone markedly enhanced both the sensitivity and maximal effectiveness of IGF-I stimulation of AIB uptake. In contrast, dexamethasone had no effect on IGF-I-stimulated glucose uptake and utilization. Maximum specific binding of [125I]IGF-I to fibroblast monolayers was identical in ethanol control and glucocorticoid-treated cells, with 50% displacement at ~5 ng/ml IGF-I. In addition to its synergism with IGF-I, preincubation with dexamethasone augmented insulin and epidermal growth factor (EGF) stimulation of [3H]thymidine incorporation; dexamethasone had no effect on platelet-derived growth factor or fibroblast growth factor action. Two-dimensional gel electrophoresis identified two specific glucocorticoid-induced proteins in human fibroblast cell extracts with molecular weights of 45K and 53K and pls of 6.8 and 6.3, respectively. These data indicate that IGF-I receptor-mediated actions in human fibroblasts are differentially modulated by glucocorticoids. Glucocorticoids are synergistic with IGF-I in stimulating mitogenesis and amino acid uptake, without having any apparent effect on IGF-I-stimulated glucose metabolism. Glucocorticoid enhancement of growth factor bioactivity may involve modulation of a regulatory event in the mitogenic signaling pathway subsequent to cell surface receptor activation. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Satellite cells cultured from dystrophic (mdx) and from control mouse hindlimb muscles grow and fuse to form muscle fibers within 4-5 days. Total cell number and muscle-fiber formation are stimulated by bovine fibroblast growth factor (FGF). At low FGF levels (0.02-0.20 ng/ml) control satellite cells as well as fibroblasts are unresponsive, while mdx satellite cells show three- to four-fold increases in growth. Control cells do not begin to respond until FGF levels reach 1-5 ng/ml. Heparin, a major constituent of muscle fiber basal lamina, inhibits myogenesis in these mouse muscle cultures. The heightened sensitivity of mdx satellite cells to FGF may permit high rates of new fiber formation in vivo without a parallel hyperplasia in the muscle fibroblast population. This finding may be important in explaining successful regeneration in mdx muscle in vivo and the fact that mdx animals escape the catastrophic symptoms seen in the related human Duchenne muscular dystrophy.  相似文献   

18.
The effects of fibroblast growth factor (FGF) on hamster dermal fibroblasts and chondrogenic cells, both of mesodermal origin, were compared with special reference to growth stimulation and morphological changes in monolayer cultures, and colony formation in semisolid medium. FGF (10 to 200 ng/ml) caused appreciable cell proliferation of dermal fibroblasts but not of chondrogenic cells, while FGF (50-200 ng/ml) caused very marked dose-dependent morphological changes in monolayer cultures and colony formation in semisolid medium of both fibroblasts and chondrogenic cells. It is suggested that FGF is the same type of growth factor as the transforming growth factor(s) because, like the latter, it induces drastic morphological changes of normal mesodermal cells in monolayer cultures and their colony formation in semisolid medium.  相似文献   

19.
Chicken, ovine or human growth hormones have no mitogenic effect on chicken heart mesenchymal cells, which are proliferatively quiescent at low culture densities in medium containing heparinized, heat-defibrinogenated rooster plasma at 10%. Sm-C/IGF-I (15 ng/ml; 2 nM), MSA/rIGF-II (50 ng/ml; 7 nM), insulin (10,000 ng/ml; 1750 nM) or proinsulin (16,000 ng/ml; 1750 nM), however, cause these cells to increase threefold in number during four days of incubation. While EGF alone at 100 ng/ml causes threefold multiplication at four days and brain FGF causes a sixfold increase, EGF acts synergistically with Sm-C/IGF-I, MSA/rIGF-II, insulin or proinsulin to cause 18-fold multiplication, and brain FGF acts synergistically with IGFs to cause 20-fold multiplication. EGF and brain FGF, however, show no mitogenic synergy. Addition to the plasma-containing culture medium of a monoclonal antibody to Sm-C/IGF-I nearly abolishes the mitogenic effect of added EGF or brain FGF but does not affect the autonomous (mitogenic hormone-independent) proliferation of RSV-infected chicken heart mesenchymal cells. These findings support the somatomedin hypothesis for growth hormone action and suggest that potentiation of the activity of other mitogenic hormones, like EGF and FGF, makes a significant contribution to control of cell proliferation by the GH/IGF axis.  相似文献   

20.
We have previously shown that insulin-like growth factor II (IGF-II) is produced by bone cells and that IGF-II stimulates cell proliferation and collagen synthesis in bone cells. We now extend these in vitro findings by demonstrating specific IGF-II binding to bone cells derived from newborn mouse calvaria and embryonic chick calvaria. The kinetics of [125I] IGF-II binding in embryonic chick calvaria cells showed time and temperature dependence. Scatchard analysis of [125I]IGF-II binding to chick calvaria cells showed an apparent Kd of 1.4 x 10(-10) M, with a calculated receptor site concentration of 40,000/cell. The specificity characteristics showed that IGF-II was significantly more potent than IGF-I or insulin in displacing IGF-II tracer. Competition for binding of [125I]IGF-II by unlabeled IGF-II showed a dose-dependent displacement between 0.5 and 25 ng/ml. Fifty percent displacement of [125I]IGF-II binding to chick and mouse calvarial cells was achieved at 1-2 ng/ml; 90% of specific binding of [125I]IGF-II was displaceable in the presence of 125 ng/ml of unlabeled IGF-II. IGF-I showed less than 5% cross reactivity for displacement of [125I]IGF-II binding to chick and mouse bone cells. Type II receptor inhibitory antibodies, R-II-PAB1 inhibited the binding of [125I]IGF-II to mouse bone cells and H-35 rat hepatoma cells (which contain type II but not type I receptors) in a dose-dependent manner. R-II-PAB1 also inhibited basal cell proliferation as well as IGF-II-, IGF-I-, and fibroblast growth factor (FGF)-induced cell proliferation in mouse bone cells. In chick calvaria bone cells and TE89 human osteosarcoma cells, R-II-PABI inhibited neither binding of [125I]IGF-II nor IGF-II-induced cell proliferation. These results together with our findings that IGF-II increased chick bone cell proliferation in the presence of maximal doses of IGF-I suggest that at least part of the mitogenic action of IGF-II is mediated through type II rather than type I receptors in bone cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号