首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of DNA by mixtures of mouse lymph node and thymic cells was studied in vitro using mitomycin-treated allogeneic spleen cells as stimulator cells. The tests were performed to see whether there occurs a similar cell synergy during this reaction as has been reported during the in vivo graft-vs-host response.It was observed that mixtures of thymocytes and lymph node cells give higher incorporations of isotope-labelled thymidine than can be explained by a pure additive effect of the two cell populations tested separately. This enhancement of the reactivity was more pronounced using combinations of lymph node cells and medullary thymocytes obtained from cortisone-treated donors. Enhancement was also noted between lymph node cells and spleen cells. Blocking of the capacity of lymph node cells to synthesize DNA by treatment with mitomycin abolished this enhanced activity when mixed with thymic cells. On the contrary, mitomycin treatment of thymocytes did not abolish their capacity to increase the reactivity when mixed with normal lymph node cells. Thymocytes, which were unresponsive to the mitomycin-treated cells for genetic reasons, were also found to increase DNA synthesis when combined with lymph node cells. The mechanism by which thymocytes increase DNA synthesis of lymph node cells is not clear, but the results show that they have to be present during the reaction, since culture medium “conditioned” by thymocytes did not exhibit any enhanced capacity to promote a mixed lymphocyte reaction of lymph node cells.The results are thus in agreement with the findings obtained by others showing that mixtures of lymph node cells and thymic cells yield higher immunological reactivities in vivo against foreign transplantation, antigens than can be explained by a pure additive effect of the reactivities by the two cell populations tested separately. However, in contrast to these findings, the thymic cells do not have to be able to synthesize DNA or to react against the foreign cells in vitro to yield an enhanced response when mixed with lymph node cells.  相似文献   

2.
3.
Claudin-4 regulates ion permeability via a paracellular pathway in renal epithelial cells, but its other physiological functions have not been examined. We found that hyperosmotic stress increases claudin-4 expression in Madin-Darby canine kidney cells. Here, we examined whether claudin-4 affects cell motility, cell association, and the intracellular distribution of endogenous junctional proteins. Doxycycline-inducible expression of claudin-4 did not change endogenous levels of claudin-1, claudin-2, claudin-3, occludin, E-cadherin, and ZO-1. Claudin-4 overexpression increased cell association and decreased cell migration without affecting cell proliferation. Doxycycline did not change cell junctional protein levels, cell association or cell migration in mock-transfected cells. The insolubility of claudin-1 and -3 in Triton X-100 was increased by claudin-4 overexpression, but that of claudin-2, occludin, ZO-1, and E-cadherin was unchanged. Immunocytochemistry showed that claudin-4 overexpression increases the accumulation of claudin-1 and -3 in tight junctions (TJs). Furthermore, claudin-4 overexpression increased the association of claudin-4 with claudin-1 and -3. These results suggest that claudin-4 accumulates claudin-1 and -3 in TJs to enhance cell-cell contact in renal tubular epithelial cells.  相似文献   

4.
5.
N-cadherin, a member of the Ca(2+)-dependent cell-cell adhesion molecule family, plays an essential role in skeletal muscle cell differentiation. We show that inhibition of N-cadherin-dependent adhesion impairs the upregulation of the two cyclin-dependent kinase inhibitors p21 and p27, the expression of the muscle-specific genes myogenin and troponin T, and C2C12 myoblast fusion. To determine the nature of N-cadherin-mediated signals involved in myogenesis, we investigated whether N-cadherin-dependent adhesion regulates the activity of Rac1, Cdc42Hs, and RhoA. N-cadherin-dependent adhesion decreases Rac1 and Cdc42Hs activity, and as a consequence, c-jun NH2-terminal kinase (JNK) MAPK activity but not that of the p38 MAPK pathway. On the other hand, N-cadherin-mediated adhesion increases RhoA activity and activates three skeletal muscle-specific promoters. Furthermore, RhoA activity is required for beta-catenin accumulation at cell-cell contact sites. We propose that cell-cell contacts formed via N-cadherin trigger signaling events that promote the commitment to myogenesis through the positive regulation of RhoA and negative regulation of Rac1, Cdc42Hs, and JNK activities.  相似文献   

6.
Double-negative (CD4-/CD8-) thymocytes from young adult mice can be separated into two distinct subpopulations on the basis of the binding of mAb 7D4 directed against the receptor for IL-2. The 7D4+ cells have predominantly nonrearranged TCR beta-chain genes and express incomplete 1.0-kb beta-messages, whereas the 7D4- cells have rearranged beta-genes and express complete 1.3-kb as well as incomplete 1.0-kb beta-messages. These two populations of double-negative thymocytes also differ in their responses to IL-2 and IL-4. The 7D4+ cells are nonresponsive to IL-2 alone or IL-2 plus PMA but they are stimulated to proliferate by the combination of IL-4 and PMA. In contrast, the 7D4- cells vigorously proliferate in response to IL-2 alone or IL-2 plus PMA but they respond poorly to IL-4 alone or IL-4 plus PMA. These results suggest that IL-2 and IL-4 may be involved in the stimulation of immature thymocytes at distinct steps of their differentiation. IL-4 together with PMA stimulate immature thymocytes which seem to express the IL-2R but do not respond to IL-2.  相似文献   

7.
The influx of Ca(2+) across the T lymphocyte membrane is an essential triggering signal for activation and proliferation by an antigen. The aim of this study was to determine if Ca(2+) influx through estradiol receptor (ER) operated channels of Ca(2+) entry induced activation of lymphoid cells. Mouse thymocytes were incubated with 17 beta-estradiol (E) and in the presence or absence of the mitogen, phytohemagglutinin (PHA). Despite evidence of an enhanced binding of E to ER on thymocyte membranes, and an E dose-related influx of Ca(2+), there was a consistent down regulation of IL-2 receptor expression (P < 0.001). Incubation of thymocytes with PHA enhanced IL-2 receptor expression although the down regulatory effect of E was still evident. The results suggest that the Ca(2+) channel activated by E may have a down regulatory effect on the IL-2 receptor in thymus cells leading to the dampening of cell activation process.  相似文献   

8.
Combinations of mouse thymic cells and lymph-node cells were tested for their capacity to produce a graft-vs.-host response, splenomegaly, when injected into newborn F1-hybrids.Large numbers of normal thymocytes mixed with lymph-node cells yielded higher spleen indices than expected by summing the responses of the two cell populations tested separately, and low cell numbers suppressed the response below that obtained by lymph-node cells tested separately. Spleen cells plus lymph-node cells yielded spleen indices as expected. Suppressive activity was observed in the cortisone-resistant, medullary, thymocyte population, whereas the synergistic one was residing in the cortisone-sensitive cell population. Neither synergistic nor suppressor activity was observed when the thymocytes were syngeneic with the recipients or when their capacity to synthesize DNA was blocked by prior treatment with mitomycin C.The results seem to indicate that the immunologically responsive cell population in the thymus contains cells which, upon antigen stimulation, inhibit the immune response by other lymphocytes.  相似文献   

9.
10.
11.
12.
Interferon production by mitogen-stimulated mouse spleen cells increases as the age of the cell donor increases and also varies with with the strain of the cell donor. Exogenous interferon added to mouse spleen cell cultures at dose levels known to be produced by the cells causes a reduction in the proliferative response of T cells to mitogen stimulation. Since the spleen cells from old mice respond poorly to mitogen stimulation, it may be possible that the interferon elaborated by these cells is adversely affecting the mitogen assay.  相似文献   

13.
14.
Functional roles of interleukin (IL-)6 in T cell response were investigated. Mice deficient in IL-6 and wild mice were immunized with antigens (myelin oligodendrocyte glycoprotein or methylated BSA) and production of IL-4 and interferon (IFN)-gamma by regional lymph nodes was measured. IL-6 deficiency led to an enhancement of IL-4 and an inhibition of IFN-gamma production. Moreover, polyclonal stimulation of spleen T cells from unimmunized IL-6-deficient mice with anti-CD3 plus anti-CD28 antibodies (Abs) demonstrated an enhancement of T helper (Th)(2)responses. The presence of IL-6, however, augmented IL-4 production but it inhibited IFN-gamma expression by spleen T cells in response to polyclonal stimulation and by antigen-primed spleen T cells in response to re-challenge with the antigen. In contrast, the induction of spleen CD4-positive T cells into Th(2)cells in vitro by the anti-CD3 plus IL-4 was completely suppressed by exogenously added IL-6, whereas Th(1)differentiation of T cells by the anti-CD3 plus IL-12 was not inhibited by the presence of IL-6. Thus, these results indicate that IL-6 physiologically could modulate qualitative T cell response and suggest that it augments Th(1)responses partly through its inhibitory capability of IL-4-induced Th(2)differentiation of naive T cells.  相似文献   

15.
Supernatants of adherent mouse peritoneal exudate cells or human mononuclear cells were used as the source of lymphocyte activation factor (LAF). LAF was found to potentiate the effect of mitogens such as PHA and Con A on DNA synthesis by mouse thymocytes. However, LAF also was capable of reducing vigorous thymosyte reactions to Con A. Thus, LAF usually enhanced the effect of PHA on DNA synthesis by BALB/c thymocytes to a relatively greater degree than that of Con A. This change in the ratio of Con A to PHA response of thymocytes suggests that LAF can serve as a regulator of thymocyte DNA synthesis. Moreover, in the presence of LAF, allogeneic thymocytes developed the ability to have bidirectional mixed thymocyte reactions. Exposure to LAF not only improved the ability of parental thymocytes to act as responder cells, but, in addition, led to increased stimulatory activity of F1 thymocytes, presumably by promoting the differentiation of stimulator cells. These indications that LAF affected differentiation were investigated further by studying its effect on the cAMP content of thymocytes. LAF stimulated significant immediate but transient elevations of intracellular cAMP and adenylate cyclase activity in thymocyte membranes. In contrast, the mitogens themselves failed to elevate or to influence the effect of LAF on the content of intracellular cAMP of thymocytes. Furthermore, the potentiating effect of LAF on mitogen-induced thymocyte DNA synthesis at times was enhanced by exogenous cGMP, carbachol, or imidazole. These findings suggest that LAF, through its stimulation of cAMP levels in thymocytes may in turn promote thymocytes to differentiate sufficiently to become competent to proliferative in response to mitogens.  相似文献   

16.
CD45R is a high molecular weight (p205/220) form of a series of transmembrane glycoproteins, collectively known as CD45 and present in some form on all lymphoid cells. We have proposed that CD45R+ thymocytes, a minority (15 to 30%) of total thymocytes, represent the generative thymic lineage whereas CD45 p180+ thymocytes are destined for intrathymic death. To test this hypothesis, we prepared human thymus fractions enriched for the expression of CD45R by exhaustive depletion of CD45 p180+ cells, as well as progenitor CD3-4-8- "multinegative" thymocytes which are predominantly CD45R+. Northern analysis of RNA extracted from CD45 p180- and multinegative thymus fractions demonstrated that these populations are enriched for cells able to synthesize mRNA encoding IL-2 and IL-2R after mitogenic stimulation, as compared to unfractionated thymus, consistent with the properties expected for generative thymocytes. Postulating that the CD45R glycoprotein might represent an important signal delivery molecule, we analyzed the ability of mAb specific for CD45 epitopes to synergize with suboptimal amounts of PHA and PMA in the stimulation of IL-2 mRNA production by multinegative thymocytes. We found that CD45R-specific mAb synergizes strongly with PHA/PMA to stimulate IL-2 and IL-2R mRNA expression. In contrast, mAb to CD45 common determinants were unable to synergize. Multinegative thymocytes depleted of all CD45 p180+ cells were compared to total multinegative cells and found to synthesize fourfold greater levels of IL-2 mRNA after stimulation with anti-CD45R mAb. This CD45 p180- multinegative subset is enriched for cells expressing a high density of CD45R, and for CD45- thymus cells, suggesting a possible enrichment for nonlymphoid cells which may play a role in the stimulation process. Our results suggest that the extended amino acid insert of CD45R plays a fundamental role in transmembrane signalling, and that CD45R may be a primary signal transducer for developing thymic progenitor cells.  相似文献   

17.
Thymocytes undergo a vigorous proliferative response when stimulated with a combination of IL-4 and PMA. We have found that conA-induced supernatants from a number of Th cell clones could enhance the level of IL-4/PMA-induced proliferation of unseparated thymocytes 0.5- to 2-fold and of peanut agglutinin-positive thymocytes 2- to 10-fold. These supernatants did not contain IL-2 or IFN-gamma, and the enhancing activity could be chromatographically separated from IL-3, -4, -5, and granulocyte/macrophage CSF. The possibility that the thymocyte enhancement factor contained in these supernatants was IL-6 was suggested when murine rIL-6 was found to have similar activity. Further evidence for the identity of these two factors was obtained when an IL-6 assay, based on plasmacytoma growth, was used to test column fractions showing thymocyte enhancement. All fractions active in the thymocyte enhancement assay also had activity in the plasmacytoma growth assay. These observations suggest that the thymocyte-stimulating activity present in the T cell supernatants was due to IL-6.  相似文献   

18.
Activated T cells are known to stimulate macrophage oxidative metabolism and antimicrobial activity through release of interferon-gamma (IFN-gamma). In contrast, the role of nonactivated T cells in regulating macrophage effector functions is less well defined. We have previously reported that a low molecular weight soluble factor derived from resident (nonactivated) thymocytes enhances macrophage receptor-mediated phagocytosis. In the present study, we examined the capacity of resident murine thymocytes to stimulate the respiratory burst and microbicidal activity of peritoneal macrophages. Macrophages cultured for 1-2 days with cell-free thymocyte supernatant (TS) released two to three times more H2O2 in response to PMA or opsonized zymosan than did control macrophages. The H2O2-stimulating factor in TS was distinguished from IFN-gamma by its heat stability (100 degrees C, 20 min), approximate MW of 2400 Da (gel filtration high-pressure liquid chromatography), and absence of interferon activity in both antiviral and enzyme-linked immunosorbent assays. TS-treated macrophages, however, did not exhibit a greater capacity to kill or inhibit the intracellular growth of Toxoplasma gondii, indicating that the thymocyte factor did not fully activate macrophage microbicidal mechanisms. These data suggest that thymocytes can increase the respiratory burst capacity of macrophages in the absence of antigen-specific immune responses.  相似文献   

19.
Lymphocytes, activated by lectins or specific antigens, have been shown to enhance macrophage phagocytosis through the elaboration of a heat-labile soluble factor(s). Recent evidence from our laboratory revealed that resident (nonactivated) murine thymocytes and splenic lymphocytes increase peritoneal macrophage glucose metabolism through the elaboration of a heat-stable soluble factor(s). Therefore, we investigated the effect of resident lymphocyte subpopulations on macrophage Fc-dependent phagocytosis. Thioglycollate-elicited and resident peritoneal macrophages from BALB/c mice were cultured in serum-free media with syngeneic resident thymocytes or splenic T lymphocytes. Macrophage Fc-dependent phagocytosis was assayed by measuring the ingestion of 51CrSHEA. After 4 days in vitro, resident thymocytes produced a mean 160 (+/- 31) and 136% (+/- 22) increase in Fc-dependent phagocytosis by thioglycollate-elicited (thio-macrophages) and resident peritoneal macrophages, respectively. Splenic T lymphocytes increased thio-macrophage phagocytosis by 112% (+/- 41) under similar conditions. Macrophage Fc-dependent phagocytosis was increased after 24 hr of co-culture by supernatant derived from resident thymocytes and could be further enhanced by supernatant from Con A-activated thymocytes. Supernatant from guinea pig embryo fibroblasts did not increase macrophage phagocytosis. The soluble factor(s) was produced by resident thymocytes after 24 hr of preculture. This factor was active despite heating at 100 degrees C for 30 min whereas the effect of Con A-activated thymocyte supernatant was heat-labile. The stimulatory effect of resident thymocyte supernatant was not observed when the macrophages and supernatant were cultured in 2% FCS. In contrast to the factor(s) produced by resident thymocytes, the factor(s) in FCS that increased phagocytosis was heat-labile. These data suggest thymocytes and splenic T lymphocytes promote macrophage Fc-dependent phagocytosis in the absence of antigenic or lectin stimulation. This previously unrecognized effect of resident thymocytes is due to a unique heat-stable soluble factor(s) that is concealed in the presence of serum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号