首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After treatment of mature spermatozoa of Phryne cincta egg mortality rates were determined and chromosomal mutation rates by examination of the polytene chromosomes of the F1 progeny.--A comparison of the results with similar studies made on Drosophila melanogaster yielded a two- to threefold higher sensitivity in Phryne cincta. Evaluation of data concerning DNA amounts, heterochromatin contents, distribution of breaks, repair capacities in two-break sites and oxygen concentrations in mature spermatozoa revealed no contradiction to the hypothesis that the greater sensitivity of Phryne cincta is mainly due to a high degree of spiralization of the paternal pronucleus chromosomes.  相似文献   

2.
On the basis of differences in crossing-over frequency and in radiation sensitivity, two stocks of Phryne cincta can be distinguished. The higher sensitivity of the Alpine stock (as), compared with the Berlin stock (bs), seemed to be due to its higher site number in tightly spiralized pronucleus chromosomes (Israelewski, 1979). A mathematical model was tested to arrive at an estimate of the maximal site number in Phryne. Deducing from this model, repair in a 2-break site would result with the probability of 1/6 in restitution, 1/6 in balanced chromosome aberration and 4/6 in unbalanced chromosome aberration. The maximal site number available is 13 in bs and 20 in as. It is suggested that a high proportion of 2-break sites are repaired after replication of the paternal pronucleus chromosomes. The proportion of prae- and postreplication repair is estimated to be 50% each, possibly in agreement with the distribution of nucleosomal and internucleosomal DNA in eukaryotic chromatin.  相似文献   

3.
It is generally accepted that chromosomal inversions have been key elements in adaptation and speciation processes. In this context, Drosophila subobscura has been, and still is, an excellent model species due to its rich chromosomal polymorphism. In this species, many analyses from natural populations have demonstrated the adaptive potential of individual inversions (and their overlapped combinations, the so‐called arrangements). However, little information is available on the evolutionary role of combinations generated by inversions located in homologous and nonhomologous chromosomes. The aim of this research was to ascertain whether these combinations are also a target for natural selection. For this objective, we have studied the inversion composition of homologous and nonhomologous chromosomes from a D. subobscura sample collected in a well‐studied population, Mount Avala (Serbia). No significant deviation from H‐W expectations was detected, and when comparing particular karyotypic combinations, likelihood ratios close to 1 were obtained. Thus, it seems that for each pair of homologous chromosomes inversions no deviation from randomness was detected. Finally, no linkage disequilibrium was observed between inversions located in different chromosomes of the karyotype. For all these reasons, it can be assumed that, at the cytological level, the individual inversions rather than their combinations in different chromosomes are the main target of selection.  相似文献   

4.
We have observed that, contrary to a common assumption, the puffing patterns manifest in the salivary chromosomes of Drosophila subobscura are modified by chromosomal inversions as well as by genic content. An inversion effect is apparent in the E and A chromosomes of five strains coming from four different natural populations. An effect due to the geographical location of the populations is also detected in the J and O chromosomes. The chromosomal and geographic effects are distinguishable but not contradictory. Indeed, a statistical test using the DK2 coefficient of distance shows that, for a given chromosomal arrangement, strains of different geographic origin exhibit puffing patterns significantly different; these patterns are, however, more similar to each other than they are to those of strains carrying different chromosomal arrangements of the same chromosome.  相似文献   

5.
E. Zouros 《Genetics》1981,97(3-4):703-718
The chromosomal determination of interspecific differences in mating behavior was studied in the interfertile pair, Drosophila arizonensis and Drosophila mojavensis, by means of chromosomal substitutions. Interspecific crossing over was avoided by crossing hybrid males to parental females, and identification of the origin of each chromosome in backcrossed hybrids was possible by means of allozyme markers. It was found that male mating behavior is controlled by factors located in the PGM-marked chromosome (which, in other Drosophila species, is part of the X chromosome) and in the Y chromosome. The other chromosomes influence male sexual behavior through their interactions with each other and with the PGM-marked chromosome, but their overall effect is minor. Female mating behavior is controlled by factors located in the ODH-marked and AMY-marked chromosomes, with the other chromosomes exercising a small additive effect. Hence, the two sex-specific behaviors are under different genetic control. Cytoplasmic origin has no effect on the mating behavior of either sex. There appears to be no correlation between a chromosome's structural diversity (i.e., amounts of inversion polymorphism within a species or numbers of fixed inversions across species) and its contribution to sexual isolation. These findings are in general agreement with those from similar Drosophila studies and may not be specific to the species studied here.  相似文献   

6.
After entering the oocyte and before the formation of the diploid zygote, the sperm nucleus is transformed into a male pronucleus, a process that involves a series of conserved steps in sexually reproducing animals. Notably, a major modification of the male gamete lies in the decondensation of the highly compact sperm chromatin. We present here the phenotype of sésame (ssm), a maternal effect mutation which affects the formation of the male pronucleus in Drosophila melanogaster. Homozygous ssm(185b) females produce haploid embryos which develop with only the maternally derived chromosomes. These haploid embryos die at the end of embryogenesis. Cytological analyses of the fertilization in eggs laid by ssm(185b) mutant females showed that both pronuclear migration and pronuclear apposition occurred normally. However, a dramatic alteration of the male pronucleus by which its chromatin failed to fully decondense was systematically observed. Consequently, the affected male pronucleus does not enter the first mitotic spindle, which is organized around only the maternally derived chromosomes. Immunodetection of lamina antigens indicates that a male pronuclear envelope is able to form around the partially decondensed paternal chromatin. This suggests that the maternally provided sésame(+) function is required for a late stage of sperm chromatin remodeling.  相似文献   

7.
The involvement of newly synthesized proteins and calcium in meiotic processes, sperm nuclear transformations, and pronuclear development was examined in emetine-treated, fertilized, and A-23187-activated Spisula eggs by observing changes in the morphogenesis of the maternal and paternal chromatin. Emetine treatment (50 micrograms/ml) initiated 30 min before fertilization or A-23187 activation inhibited incorporation of [3H]leucine into TCA-precipitable material and blocked second polar body formation. Sperm incorporation and the initial enlargement of the sperm nucleus were unaffected; however, the dramatic enlargement and transformation of the sperm nucleus into a male pronucleus, which normally follow polar body formation, were delayed 10 to 20 min. Unlike the situation in untreated, control eggs, male pronuclear development took place while the maternally derived chromosomes remained condensed. It was not until approximately 20 min after the normal period of pronuclear development that the maternal chromosomes dispersed and formed a female pronucleus in emetine-treated, fertilized eggs. Formation of pronuclei, however, was unaffected in both emetine-treated, A-23187-activated eggs and fertilized eggs incubated with A-23187. These observations indicate that germinal vesicle breakdown, first polar body formation, and initial transformations of the sperm nucleus are independent of newly synthesized proteins. Inhibition of second polar body formation and the delay in pronuclear development brought about by emetine, as well as the appearance of silver grains over pronuclei in autoradiographs of control eggs incubated with [3H]leucine demonstrate that nascent proteins are involved with the completion of meiotic maturation and the development of male and female pronuclei. The ability of A-23187 to override the inhibitory effects of emetine on pronuclear development suggests that both nascent protein and calcium signals are involved in regulating the status of the maternal and paternal chromatin during pronuclear development.  相似文献   

8.
Chromosomal rearrangements abound in nature and can be studied in detail in organisms with polytene chromosomes. In Drosophila and in Anopheline mosquitoes most speciation processes seem to be associated with the establishment of chromosomal rearrangements, particularly of paracentric inversions. It is not known what triggers inversions in natural populations. In the laboratory inversions are commonly generated by X-rays, mutagens or after the activity of certain transposable elements (TEs). The Anopheles gambiae complex is comprised of six sibling species, each one characterized by the presence of fixed paracentric inversions on their chromosomes. Two of these, An. gambiae s.s. and An. arabiensis, are the most important vectors of human malaria and are structured into sub-populations, each carrying a characteristic set of polymorphic chromosomal inversions. We have cloned the breakpoints of the naturally occurring polymorphic inversion In(2R)d' of An. arabiensis. Analysis of the surrounding sequences demonstrated that adjacent to the distal breakpoint lies a transposable element that we called Odysseus. Characteristics of Odysseus' terminal region and its cytological distribution in different strains as well as within the same strain indicate that Odysseus is an actively transposing element. The presence of Odysseus at the junction of the naturally occurring inversion In(2R)d' suggests that the inversion may be the result of the TEs activity. Cytological evidence from Drosophila melanogaster has also implicated the hobo transposable element in the generation of certain Hawaiian endemic inversions. This picture supports the hypothesis of the important role of TEs in generating natural inversions.  相似文献   

9.
10.
Population studies of the distribution of transposable elements (TEs) on the chromosomes of Drosophila melanogaster have suggested that their copy number increase due to transposition is balanced by some form of natural selection. Theory suggests that, as a consequence of deleterious ectopic meiotic exchange between TEs, selection can favor genomes with lower TE copy numbers. This predicts that TEs should be less deleterious, and hence more abundant, in chromosomal regions in which recombination is reduced. To test this, we surveyed the abundance and locations of 10 families of TEs in recombination-suppressing chromosomal inversions from a natural population. The sample of 49 chromosomes included multiple independent isolates of seven different inversions and a corresponding set of standard chromosomes. For all 10 TE families pooled, copy numbers were significantly higher overall within low frequency inversions than within corresponding regions of standard chromosomes. TEs occupied chromosomal sites at significantly higher frequencies within the In(3R)M0 and In(3R)K inversions than within the corresponding regions of standard 3R chromosomes. These results are consistent with the predictions of the ectopic exchange model.  相似文献   

11.
After accumulating mutations by the aid of marked inversions, spontaneous occurrence rates of chromosome aberrations were estimated for 1148 chromosome lines that originated from five stem line second chromosomes of Drosophila melanogaster. In chromosome lines originating from three stem chromosomes (CH, PQ, and RT), mutations were accumulated for 7550, 7252, and 7256 chromosome generations, respectively, but no structural change was detected. For the chromosome lines that originated from the other two stem chromosomes, the situation was different: Twenty aberrations (19 paracentric inversions and 1 translocation between the second and the third chromosomes) during 45990 chromosome generations took place in the 500 chromosome lines derived from stem line chromosome (AW), and 92 aberrations (83 paracentric inversions, 6 pericentric inversions, 2 translocations between the second and the third chromosomes and 1 transposition) arose during 45006 chromosome generations in the 500 chromosome lines derived from stem line chromosome (JH). For the AW group the occurrence rate becomes 0.00043 per chromosome per generation for all aberrations and 0.00041 for inversions. For the JH group the corresponding rates are 0.00204 and 0.00198, respectively.-A non-random distribution of the breakpoint on the salivary gland chromosome was observed and the breakpoints were concentrated in the regions 26, 29, 33, and 34.-The cytoplasms and the chromosomes (other than the second chromosomes) were made approximately uniform throughout the experiments. Thus, this remarkable variability in the occurrence rate is most probably due to the differences in one or more chromosomal elements on the original five stem chromosomes. The mutable chromosomes (AW and JH) appear to carry a kind of mutator factor such as hi (Ives 1950).  相似文献   

12.
We analyzed rates of extra structurally abnormal chromosomes (ESAC) detected in prenatal cytogenetic diagnoses of amniotic fluid reported to the New York Chromosome Registry. These karyotypes include both extra unidentified structurally abnormal chromosomes (EUSAC)--often denoted as "markers"--and extra identified structurally abnormal chromosomes (EISAC). The rate of all EUSAC was 0.64/1,000 (0.32-0.40/1,000 mutant and 0.23-0.32 inherited), and that of all EISAC was 0.11/1,000 (0.07/1,000 mutant and 0.04/1,000 inherited). The rate of all ESAC was approximately 0.8/1,000-0.4-0.5/1,000 mutant and 0.3-0.4/1,000 inherited. Mean +/- SD maternal age of mutant cases was 37.5 +/- 2.9, significantly greater than the value of 35.8 years in controls. A regression analysis indicated a rate of change of the log of the rate of about +0.20 with each year of maternal age between 30 and 45 years. When paternal age was introduced, the maternal age coefficient increased to about +0.25--close to that seen for 47, +21--but the paternal age coefficient was -0.06. After being matched for maternal age and year of diagnosis, the case-control difference in paternal age for 24 mutant cases was -2.4 with a 95% confidence interval of -4.6 to -0.1 years. In a regression analysis of the effects of both parental ages on the (log) rate, the maternal age coefficient was +0.25 and the paternal age coefficient was -0.06. These results are consistent with a (weak) negative paternal age effect in the face of a strong maternal age effect. Since ESAC include a heterogeneous group of abnormalities, the maternal age and paternal age trends, if not the result of statistical fluctuation or undetected biases, may involve different types of events. Data in the literature suggest that chromosomes with de novo duplicated inversions of 15p have a strong maternal age effect (but little paternal age effect). Such chromosomes, however, do not account for the active maternal age trends seen in the data analyzed here. Inherited ESAC exhibited no such trends.  相似文献   

13.
Presgraves DC 《Genetics》2000,154(2):771-776
Cytoplasmic bacteria of the genus Wolbachia are best known as the cause of cytoplasmic incompatibility (CI): many uninfected eggs fertilized by Wolbachia-modified sperm from infected males die as embryos. In contrast, eggs of infected females rescue modified sperm and develop normally. Although Wolbachia cause CI in at least five insect orders, the mechanism of CI remains poorly understood. Here I test whether the target of Wolbachia-induced sperm modification is the male pronucleus (e.g., DNA or pronuclear proteins) or some extranuclear factor from the sperm required for embryonic development (e.g., the paternal centrosome). I distinguish between these hypotheses by crossing gynogenetic Drosophila melanogaster females to infected males. Gynogenetic females produce diploid eggs whose normal development requires no male pronucleus but still depends on extranuclear paternal factors. I show that when gynogenetic females are crossed to infected males, uniparental progeny with maternally derived chromosomes result. This finding shows that Wolbachia impair the male pronucleus but no extranuclear component of the sperm.  相似文献   

14.
Drosophila mediopunctata belongs to the tripunctata group, and is one of the commonest Drosophila species collected in some places in Brazil, especially in the winter. A standard map of the polytene chromosomes is presented. The breakpoints of the naturally occurring chromosomal rearrangements are marked on the map. The distribution of breaking points through the chromosomes of D. mediopunctata is apparently non-random. Chromosomes X, II and IV show inversion polymorphisms. Chromosome II is the most polymorphic, with 17 inversions, 8 inversions in the distal region and 9 in the proximal region. Chromosome X has four different gene arrangements, while chromosome IV has only two.  相似文献   

15.
Schmidt S  Claussen U  Liehr T  Weise A 《Human genetics》2005,117(2-3):213-219
We compared the chromosomal breakpoints of evolutionary conserved and constitutional inversions. Multicolor banding and human-specific bacterial artificial chromosomes were applied to map the breakpoints of constitutional pericentric inversions on human chromosomes 2 and 9. For the first time, we present a high-resolution analysis of the breakpoint regions, which are characterized by gene destitution, co-localization with fragile sites, multitude repeats as well as pseudogenes and, remarkably, a large sequence homology to the opposite breakpoint. In contrast, evolutionary inversion breakpoints lack such extensive cross-hybridizing regions and are often associated with fragile sites of the genome and low-copy repeats. These molecular characteristics gave evidence for different types of inversion formation and indicate that evolutionary inversions cannot originate from constitutional inversions like those of chromosomes 2 and 9. Finally, the constitutional inversion breakpoints were investigated on three different great ape species and on four test persons each bearing the same cytogenetically determined inversion on chromosomes 2 and 9, respectively. Our data indicate the existence of different molecular breakpoints for the two variant chromosomes.  相似文献   

16.
Gametic disequilibria between second chromosome polymorphic arrangements and seven linked allozyme loci were estimated in seven populations of Drosophila buzzatii from Argentina. Significant and consistent associations across populations were detected for Est-1, Est-2, Aldox, and XDH: Phenograms based on Nei's genetic distance showed that chromosomes carrying the 2ST arrangement were more similar to each other, irrespective of the population from which they were extracted, than to chromosomes carrying the derived 2J and 2JZ3.Restriction of recombination in heterokaryotypes seems to be the best explanation for the significant linkage disequilibria between inversions and the loci located inside the rearranged segments, for example, Est-1 and Aldox, or close to the break points, for example, Est-2. However, epistatic interactions between Xdh, which is outside the inversions and not near the break points, and loci tightly linked to the inversions, is the most likely explanation for the association between Xdh and chromosomal arrangements. Some of the associations detected in endemic Argentinean populations are coincident with data obtained in colonizing populations of the Old World and Australia. Thus historical processes that took place in the original area of the species' distribution can account for these linkage disequilibria in colonized populations of D. buzzatii.  相似文献   

17.
A qualitative study is presented of chromosomal rearrangements induced in peripheral blood lymphocytes of Macaca fascicularis, after exposure to gamma-irradiation at 2 Gy and 3 Gy. The use of a new diagrammatic representation allowed us to compare, for each type of rearrangement, the distribution of the observed break-points with the theoretical random distribution. It was concluded that chromosomal mutagenesis does not occur at random: an excess of involvement of small chromosomes is found for dicentrics and reciprocal translocations; an excess of telomeric breaks exists in dicentrics and paracentric inversions. In our sample of 27 pericentric inversions, the larger chromosomes are too frequently involved, 2 different inversions are observed at least twice and 7 (or 8) reproduce chromosomes of other primates.  相似文献   

18.
Data on male recombination in twenty third-chromosomal lines of Drosophila melanogaster are presented. Frequencies of female and male recombination have been calculated in seven intervals along the third chromosome. The influence on male recombination (M.R.) exercised by different factors such as population origin (cellar, vineyard), the presence of heterozygous inversions and recessive lethal chromosomes, is analyzed. The results obtained lead to the main conclusion that M.R. is not affected by the presence of heterozygous inversions which reduce female recombination in the same lines. In the light of this effect, the possible mechanism operating on male recombination is discussed. Lethal chromosomes reduce significantly the number of male recombination events as compared with wild chromosomes. We have not obtained significant differences in male recombination frequencies between the cellar and the vineyard lines.  相似文献   

19.
Chromosomal inversion polymorphism was characterized in Finnish Drosophila montana populations. A total of 14 polymorphic inversions were observed in Finnish D. montana of which nine had not been described before. The number of polymorphic inversions in each chromosome was not significantly different from that expected, assuming equal chance of occurrence in the euchromatic genome. There was, however, no correlation between the number of polymorphic inversions and that of fixed inversions in each chromosome. Therefore, a simple neutral model does not explain the evolutionary dynamics of inversions. Furthermore, in contrast to results obtained by others, no significant correlation was found between the two transposable elements (TEs) Penelope and Ulysses and inversion breakpoints in D. montana. This result suggests that these TEs were not involved in the creation of the polymorphic inversions seen in D. montana. A comparative analysis of D. montana and Drosophila virilis polytene chromosomes 4 and 5 was performed with D. virilis bacteriophage P1 clones, thus completing the comparative studies of the two species.  相似文献   

20.
Chromosomal inversions are the most common type of genome rearrangement in the genus Drosophila. Although the potential of transposable elements (TEs) for generating inversions has been repeatedly demonstrated in the laboratory, little is known on their role in the generation of natural inversions, which are those effectively contributing to the adaptation and/or evolution of species. We have cloned and sequenced the two breakpoints of the polymorphic inversion 2q7 of D. buzzatii. The sequence analysis of the breakpoint regions revealed the presence in the inverted chromosomes of large insertions, formed by complex assemblies of transposons, that are absent from the chromosomes without the inversion. Among the transposons inserted, the Foldback-like element Galileo, that was previously found responsible of the generation of the widespread inversion 2j of D. buzzatii, is present at both 2q7 breakpoints and is the most likely inducer of the inversion. A detailed study of the nucleotide and structural variation in the breakpoint regions of six chromosomal lines with the 2q7 inversion detected no nucleotide differences between them, which suggests a monophyletic and recent origin. In contrast, a remarkable degree of structural variation was observed in the same six chromosomal lines. It thus appears that the two breakpoints of the inverted chromosomes have become genetically unstable hotspots, as was previously found for the 2j inversion breakpoints. The possibility that this instability is caused by structural properties of Foldback elements is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号