首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability to regulate apoptosis in mammalian cell cultures represents one approach to developing more economical and efficient processes. Genetic modification of cells using anti-apoptotic genes is one method that may be used to improve cellular performance. This study investigates a method to inhibit upstream apoptosis pathways through the overexpression of MDM2, an E3 ubiquitin ligase for p53. Both 293 and CHO cells expressing MDM2 were examined under both batch and spent media conditions. For batch cultures, MDM2 overexpression increased viable cell densities and viabilities over control cells with the largest enhancements observed in CHO cells. When CHO cells were passaged without medium exchange, cells expressing MDM2 reached a viable cell density that was nearly double the control and survived for an extra day in culture. When exposed to spent media initially, both 293-MDM2 and CHO-MDM2 cells continued to grow for 2 days while the control cells stopped growing after the first day. DNA analysis using flow cytometry confirmed that while CHO controls were found to be undergoing DNA fragmentation, CHO-MDM2 cells exhibit DNA degradation at a much slower rate. When compared to Bcl-2-expressing cells, MDM2 expression showed greater protection against apoptosis in passaged culture, spent medium, and following transient p53 overexpression. However, expression of the RING sequence of MDM2 responsible for E3 ligase activity without the other components of the protein was found to be toxic to 293 cells in culture. These results suggest that the overexpression of heterologous MDM2 represents a promising method to delay apoptosis in mammalian cell cultures.  相似文献   

2.
Transient gene expression in mammalian cells is an efficient process to produce recombinant proteins for various research applications and large molecule therapeutics development. For the first time, we report a screen to identify human microRNAs (miRNAs) that increase titers after polyethylenimine (PEI) mediated transient transfection of a HEK293 cell line. From a library of 875 miRNAs, we identified 2 miRNAs, miR‐26a‐5p and miR‐337‐5p, that increased human IgG1 (huIgG1) yields by 50 and 25%, respectively. The titer increase was achievable by expressing miR‐26a‐5p from oligonucleotides or a plasmid. Furthermore, combining miR‐26a‐5p with valproic acid (VPA) treatment doubled huIgG1 titers. Assessment of miR‐26a‐5p and VPA treatment across a panel of 32 human and murine antibodies demonstrates that the level of yield enhancement was molecule‐dependent, with most exhibiting a range of 50–100% titer increase. These findings exemplify that combining genetic and chemical manipulation can be an effective strategy to enhance transient transfection productivity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1139–1145, 2017  相似文献   

3.
《MABS-AUSTIN》2013,5(5):977-986
ABSTRACT

HEK293 transient expression systems are used to quickly generate proteins for research and pre-clinical studies. With the aim of engineering a high-producing host that grows and transfects robustly in bioreactors, we deleted the pro-apoptotic genes Bax and Bak in an HEK293 cell line. The HEK293 Bax Bak double knock-out (HEK293 DKO) cell line exhibited resistance to apoptosis and shear stress. HEK293 DKO cells sourced from 2 L seed train bioreactors were most productive when a pH setpoint of 7.0, a narrow pH deadband of ±0.03, and a DO setpoint of 30% were used. HEK293 DKO seed train cells cultivated for up to 60 days in a 35 L bioreactor showed similar productivities to cells cultivated in shake flasks. To optimize HEK293 DKO transfection cultures, we first evaluated different pH and agitation parameters in ambr15 microbioreactors before scaling up to 10 L wavebag bioreactors. In ambr15 microbioreactors with a pH setpoint of 7.0, a wide pH deadband of ±0.3, and an agitation of 630 rpm, HEK293 DKO transient cultures yielded antibody titers up to 650 mg/L in 7 days. The optimal ambr15 conditions prompted us to operate the 10 L wavebag transfection without direct pH control to mimic the wide pH deadband ranges. The HEK293 DKO transfection process produces high titers at all scales tested. Combined, our optimized HEK293 DKO 35 L bioreactor seed train and 10 L high titer transient processes support efficient, large-scale recombinant protein production for research studies.  相似文献   

4.
5.
Apoptosis in mammalian cell culture is associated with decreased bioproduct yields and can be inhibited through altering the intracellular signaling pathways mediating programmed cell death. In this study, we evaluated the capacity to inhibit caspases to maintain high viable cell numbers in CHO and 293 cultures. Two genetic caspase inhibitors, XIAP and CrmA, were examined along with a mutant of each, XIAP-BIR123NC, which contains three BIR domains but lacks the RING finger, and CrmA-DQMD, which has CrmA's pseudosubstrate site replaced with that of another caspase inhibitor, p35. Stable CHO pooled and 293 clonal cell lines expressing each protein were exposed to apoptotic insults, including spent medium, Sindbis virus, and etoposide. For each insult the mutated protein resulted in higher viabilities than its wild-type counterpart. However, the mutants provided different levels of protection, depending on the insult considered. CrmA-DQMD was the preferred inhibitor for spent medium-induced apoptosis, whereas XIAP-BIR123NC conferred better protection for etoposide-induced death. Addition of Z-VAD.fmk to the genetically engineered cells enhanced viabilities in the presence of spent medium or etoposide; however, the largest increases in viability were experienced by the control cells, indicating an overlap in caspase inhibition between the genetic and chemical inhibitors. Finally, parental 293 cells were treated with caspase-8 and -9 inhibitors, Z-IETD.fmk and Z-LEHD.fmk, in concert with spent medium or etoposide exposure. Spent medium-induced death was delayed more readily with the caspase-8 inhibitors, CrmA-DQMD and Z-IETD.fmk, and etoposide-induced death was stalled more so with XIAP-BIR123NC and Z-LEHD.fmk. These results suggest that the apoptosis pathways induced and the level of protection afforded by a particular caspase inhibitor may vary with the insult considered.  相似文献   

6.
7.
Apoptosis is now recognized as a significant problem in mammalian cell culture. Therefore, in this study, a single gene and multigene approach to inhibit apoptosis has been examined. Stable Chinese hamster ovary (CHO) cell lines were generated to overexpress different single, dual, and triple combinations of three apoptosis inhibitor genes. Two upstream inhibitors involved in the mitochondrial pathway, Bcl-X(L) and Aven, were expressed in addition to a downstream inhibitor of caspases. The caspase inhibitor, a variant of XIAP containing only the caspase inhibitory BIR domains (XIAP-BIRs), has been shown previously to enhance viabilities in mammalian cultures. Stable clonal cell lines were generated and tested for three apoptotic insults: Sindbis virus infection, the chemical reagent etoposide, and spent medium. For all single gene experiments, the Bcl-X(L)-containing cell lines provided superior protection to either the Aven- or XIAP-BIRs-containing cell lines following initial exposure to the insults. However, the cell lines expressing two or more anti-apoptosis proteins were more effective at inhibiting cell death than those expressing just one anti-apoptosis gene. The cell lines overexpressing Bcl-X(L) in combination with XIAP-BIRs were especially effective in delaying cell death for all three apoptotic insults. Expression of all three anti-apoptosis genes in concert was only slightly more effective than using Bcl-X(L) and XIAP-BIRs for some insults. During exposure to spent medium, CHO-BIRS + Aven + BclX(L) was the best inhibitor of apoptosis (IAP) initially, whereas CHO-BIRs + BclX(L) was particularly effective at later times of the experiment. In conclusion, the utilization of a mitochondrial dysfunction inhibitor used in combination with a caspase inhibitor was more effective in thwarting the progression of apoptosis than either inhibitor expressed individually. Thus, the concurrent expression of multiple apoptosis inhibitors may be the most effective strategy to increase survival of mammalian cells in culture.  相似文献   

8.
Nuclear counts determined by crystal violet staining from samples of stationary or microcarrier cultures of hybridomas, CHO or Vero cells were consistently and significantly higher than cell concentrations determined by the trypan blue or Coulter counter methods. This difference was attributed to the presence of a significant proportion of binucleated cells, which are assumed to be 35% of the cell population in the stationary phase of Vero cultures. The proportion of such cells during exponential growth was variable. However, continuous sub-culture of these cells induced a degree of synchrony during growth which resulted in a cyclic variation of the difference between the cell and nuclei counting techniques. This data indicates that care should be taken in interpreting cell culture profiles based solely on crystal violet nuclei staining counts.  相似文献   

9.
Lower yields and poorer quality of biopharmaceutical products result from cell death in bioreactors. Such cell death may occur from necrosis but is more commonly associated with apoptosis. During the process of programmed cell death or apoptosis, caspases become activated and cause a cascade of events that eventually destroy the cell. XIAP is the most potent caspase inhibitor encoded in the mammalian genome. The effectiveness of XIAP and its deletion mutants was examined in two cell lines commonly utilized in commercial bioreactors: Chinese hamster ovary (CHO) and 293 human embryonic kidney (293 HEK) cells. CHO cells undergo apoptosis as a result of various insults, including Sindbis virus infection and serum deprivation. In this study, we demonstrate that 293 HEK cells undergo apoptosis during Sindbis virus infection and exposure to the toxins, etoposide and cisplatin. Two deletion mutants of XIAP were created; one containing three tandem baculovirus iap repeat (BIR) domains and the other containing only the C-terminal RING domain, lacking the BIRs. Viability studies were performed for cells expressing each mutant and the wild-type protein on transiently transfected cells, as stable pools, or as stable clonal cell populations after induction of apoptosis by serum deprivation, Sindbis virus infection, etoposide, and cisplatin treatment. Expression of the wild-type XIAP inhibited apoptosis significantly; however, the XIAP mutant containing the three BIRs provided equivalent or improved levels of apoptosis inhibition in all cases. Expression of the RING domain offered no protection and was pro-apoptotic in transient expression experiments. With the aid of an N-terminal YFP fusion to each protein, distribution within the cell was visualized, and the wild-type and mutants showed differing intracellular accumulation patterns. While the wild-type XIAP protein accumulated primarily in aggregates in the cytosol, the RING mutant was enriched in the nucleus. In contrast, the deletion mutant containing the three BIRs was distributed evenly throughout the cytosol. Thus, protein engineering of the XIAP protein can be used to alter the intracellular distribution pattern and improve the ability of this caspase inhibitor to protect against apoptosis for two mammalian cell lines.  相似文献   

10.
The overexpression of bcl-2 and its homologues is a widely used strategy to inhibit apoptosis in mammalian cell culture systems. In this study, we have evaluated the Bcl-2 homologue, Bcl-x(L) and compared its effectiveness to a Bcl-x(L) mutant lacking most of the non-conserved unstructured loop domain, Bcl-x(L)Delta (deletion of amino acids 26 through 83). The cell line, Chinese hamster ovary (CHO), was genetically modified to express constitutively Bcl-x(L) or the Bcl-x(L) variant and subjected to model apoptotic insults including Sindbis virus (SV) infection, gradual serum withdrawal, and serum deprivation. When cells were engineered to overexpress Bcl-x(L)Delta, cell death due to the SV was inhibited, and Bcl-x(L)Delta provided comparable protection to the wild-type Bcl-x(L) even though expression levels were much lower for the mutant. Furthermore, the cells expressing Bcl-x(L)Delta continued to proliferate following infection while CHO-bcl-x(L) ceased proliferation immediately following infection. As a result, total production of a heterologous protein encoded on the SV was highest in cell lines expressing Bcl-x(L)Delta. Cells expressing the variant Bcl-x(L) also continued to proliferate and showed increased viable cell numbers following gradual serum withdrawal. In contrast, wild-type Bcl-x(L) expressing CHO cells were found to arrest growth but maintain viability following serum withdrawal. Interestingly, CHO cells expressing Bcl-x(L)Delta were also able to recover and return to rapid growth rates much faster than either the wild-type CHO-bcl-x(L) or CHO following the replenishment of fresh complete medium containing 10% FBS. Confocal imaging of yellow fluorescent protein (YFP) fused to the N terminus of Bcl-x(L) and Bcl-x(L)Delta indicated dense aggregates of the Bcl-x(L)Delta while the wild-type protein was distributed throughout the cell in a manner resembling transmembrane localization. As an alternative to complete removal of the loop domain, Bcl-x(L) variants were created in which aspartate residues containing potential caspase recognition sites within the loop domain of Bcl-x(L) were removed. Cell populations expressing various Bcl-x(L)-Asp mutants were exposed to an apoptotic spent medium stimulus, and the cells expressing these Bcl-x(L) variants provided increased viabilities as compared to cells containing wild-type Bcl-x(L) protein. These studies indicate that modification of anti-apoptotic genes can affect multiple cellular properties including response to apoptotic stimuli and cell growth. This knowledge can be valuable in the design of improved apoptosis inhibitors for biotechnology applications.  相似文献   

11.
A stably transformed BHK cell line, engineered to produce a human transferrin half-molecule under the control of a mouse metallothionein (MT) promoter, was used as a model system to develop strategies to increase inducible recombinant protein production. Gene expression regulated by the MT promoter is induced by heavy metals (e.g. Zn+2 or Cd+2) in a dose dependent fashion. However, at high concentrations these metals are toxic to cells. Culture protocols which balance these counteractive effects are needed to maximize transferrin production. Fully induced cells produced up to 0.7 pg transferrin/cell·h, a 3-fold increase in production over uninduced levels. Cell growth was inhibited at Cd+2 dosages above 1 fmol/cell; prolinged exposure at this dosage was cytotoxic. Cell specific transferrin productivities decreased within 48 h following induction with Cd+2 although cell-associated Cd+2 levels remain high. Further addition of Cd+2 to cultures restored cell specific transferrin production rates. This suggests that cell associated Cd+2 is sequestered into a form which does not stimulate the MT promoter. Cd+2 dosing regimes which maintained cell associated Cd+2 concentrations between 0.2 and 0.35 fmol/cell ensured cell growth and high cell specific productivities which maximized final product titers. For routine batch culture, initial Cd+2 loadings of 0.8 fmol/cell gave near-maximum transferrin production levels. For extended culture, repeated small doses of 0.5 fmol/cell every 24 to 48 h maximized transferrin synthesis with this cell line.  相似文献   

12.
Mammalian cells are extensively used for production of biopharmaceuticals. Most cells used in industry have infinite proliferative capacity, which provides a high number of cells and corresponding productivity. However, infinite cells will continue to multiply even after cell density reaches sufficient levels. This excess proliferation aggravates the culture environment and induces low productivity. Therefore, after cell density reaches sufficient levels, downregulation of proliferation would prevent such aggravation and extend the culture period and improve productivity. To realize such suitable proliferation, we aimed to establish a novel cell line whose proliferation was spontaneously downregulated after reaching a sufficient population level. Mutagenesis using high-energy beam irradiation was used. CHO-DP12 cells were irradiated with 2.5 Gy X-rays and screened with hydroxyurea and 5-fluorouracil to eliminate any cells multiplying after confluence and to concentrate desired mutants. One clone was established and named CHO-M1. Cell cycle analysis indicated that CHO-M1 cells had a similar cell cycle profile in the exponential growth phase, but cells rapidly accumulated in G1 phase just before confluence and did not progress through the cell cycle. This suggested that until confluence, proliferation of CHO-M1 was similar to parental CHO, but after confluence, it was inhibited and under G1 arrest. The specific antibody production rate of CHO-M1 was kept high, even after confluence, while that of parental CHO was drastically decreased in stationary phase. These results suggest that the desired cell line was successfully established and that high-energy beam irradiation could be an efficient mutagenic technique for breeding industrial cells.  相似文献   

13.
14.
Bcl‐xL, a member of the Bcl‐2 family, is known to inhibit apoptosis of recombinant Chinese hamster ovary (rCHO) cells induced by the addition of sodium butyrate (NaBu), which is used for the elevated expression of recombinant protein. In order to understand the intracellular effects of Bcl‐xL overexpression on CHO cells treated with NaBu, changes to the proteome caused by controlled Bcl‐xL expression in rCHO cells producing erythropoietin (EPO) in the presence of 3 mM NaBu were evaluated using two‐dimensional differential in‐gel electrophoresis (2D‐DIGE) and MS analysis. The consequences of Bcl‐xL overexpression were not limited to the apoptotic signaling pathway. Out of eight proteins regulated significantly by Bcl‐xL overexpression in 3 mM NaBu addition culture, four proteins were related to cell survival (Iq motif‐containing GTPase‐activating protein 1), cell proliferation (dihydrolipoamide‐S‐acetyltransferase, guanine nucleotide binding protein alpha interacting 2), and repair of DNA damage (BRCA and CDKN1A interacting protein). Taken together, a DIGE approach reveals that overexpression of Bcl‐xL not only inhibits apoptosis in the presence of NaBu but also affects cell proliferation and survival in various aspects. Biotechnol. Bioeng. 2010; 105: 358–367. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
Fluorescent proteins expressed in mammalian cells can be quantified quickly and noninvasively with a standard fluorescence plate reader. We have previously exploited this quality in cell growth assessment (Hunt et al., 1999b). In this work, different CHO cell lines constitutively expressing fluorescent proteins were evaluated as model systems for process development and optimization. Our results demonstrate that the fluorescence of these cell lines quickly reveals conditions that might improve the overall productivity. Sodium butyrate, a well-known yet unpredictable enhancer of production, was chosen for this study. Due to the competing effects of sodium butyrate ("butyrate") on expression and cell number, the maximal overall productivity represents a compromise between enhancement of production and toxicity. Based on fluorescence only, it is possible to separate effects on cell number and specific production by combining microplate fluorescence measurements with data obtained by flow cytometry. This allows for rapid screening of different clones without counting cells or quantifying the recombinant protein, a highly attractive feature if the expression of green fluorescent protein (GFP) was correlated to that of a protein of interest. For all clones tested, negative effects of butyrate on proliferation were similar, while net enhancement of expression was characteristic for each clone. Therefore, it is necessary to optimize treatment for each individual clone. This work demonstrates that, based on the fluorescence of GFP-expresssing cell lines, it is possible to examine noninvasively three critical, generic parameters of butyrate treatment: butyrate concentration, exposure time, and culture phase at the time of addition.  相似文献   

16.
Cell adhesion to extracellular matrices, including fibronectin, results in clustering of integrins in focal adhesions. To promote the clustering of fibronectin and thus enhance its activity at the sites of focal adhesion formation, we have engineered a fusion protein containing recombinant fibronectin fragment (hFN) connected to the tetramerization helix domain of lac repressor for oligomeric assembly. Purified Lac-hFN fusion protein exhibited significant increase of cell adhesion and proliferation of GF cells compared with hFN alone (p < 0.05).  相似文献   

17.
Several new cell culture media designed specifically for the expression of recombinant antibodies in Chinese hamster ovary (CHO) cells were investigated for the presence of bovine IgG. Three serum-free media, three protein-free (animal component free) media, as well as one chemically defined medium were included in the study. Employing a combination of affinity chromatography (Protein G or A columns), SDS-PAGE analysis, and peptide mass fingerprinting, two of the serum-free media were found to contain bovine IgG in the range of approximately 0.5 mg/L. The other five media did not contain detectable levels of contaminating Protein A or G-binding proteins such as bovine IgG.  相似文献   

18.
Aggregation of baby hamster kidney (BHK) cells cultivated in perfusion mode for manufacturing recombinant proteins was characterized. The potential impact of cultivation time on cell aggregation for an aggregating culture (cell line A) was studied by comparing expression profiles of 84 genes in the extracellular adhesion molecules (ECM) pathway by qRT‐PCR from 9 and 25 day shake flask samples and 80 and 94 day bioreactor samples. Significant up‐regulation of THBS2 (4.4‐ to 6.9‐fold) was seen in both the 25 day shake flask and 80 and 94 day bioreactor samples compared to the 9 day shake flask while NCAM1 was down‐regulated 5.1‐ to 8.9‐fold in the 80 and 94 day bioreactor samples. Subsequent comparisons were made between cell line A and a non‐aggregating culture (cell line B). A 65 day perfusion bioreactor sample from cell line B served as the control for 80 and 94 day samples from four different perfusion bioreactors for cell line A. Of the 84 genes in the ECM pathway, four (COL1A1, COL4A1, THBS2, and VCAN) were consistently up‐regulated in cell line A while two (NCAM1 and THBS1) were consistently down‐regulated. The magnitudes of differential gene expression were much higher when cell lines were compared (4.1‐ to 44.6‐fold) than when early and late cell line B samples were compared (4.4‐ to 6.9‐fold) indicating greater variability between aggregating and non‐aggregating cell lines. Based on the differential gene expression results, two mechanistic models were proposed for aggregation of BHK cells in perfusion cultures. Biotechnol. Bioeng. 2013; 110: 483–490. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The human cytomegalovirus promoter (hCMV) is susceptible to gene silencing in CHO cells, most likely due to epigenetic events, such as DNA methylation and histone modifications. The core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene has been shown to prevent DNA methylation. A set of modified hCMV promoters was developed by inserting one or two copies of IE in either forward or reverse orientations either upstream of the hCMV enhancer, between the enhancer and core promoter (CP), or downstream of the CP. The modified hCMV with one copy of IE inserted between the enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability without compromising expression level when compared with the wild‐type (WT) hCMV. A third of 18 EGFP expressing clones generated using MR1 retained 70% of their starting expression level after 8 weeks of culture in the absence of selection pressure, while none of 18 WT hCMV generated clones had expression above 50%. MR1 also improved antibody expression stability of methotrexate (MTX) amplified CHO cell lines. Stably transfected pools generated using MR1 maintained 62% of their original monoclonal antibody titer after 8 weeks of culture in the absence of MTX, compared to only 37% for WT hCMV pools. Low levels of CpG methylation within both WT hCMV and MR1 were observed in all the analyzed cell lines and the methylation levels did not correlate to the expression stability, suggesting IE enhances expression stability by other mechanisms other than preventing methylation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:523–534, 2014  相似文献   

20.
In an attempt to develop a high producing mammalian cell line expressing CNTO736, a Glucagon like peptide‐1‐antibody fusion protein (also known as a Glucagon like peptide‐1 MIMETIBODYTM), we have noted that the N‐terminal GLP‐1 portion of the MIMETIBODYTM was susceptible to proteolytic degradation during cell culture, which resulted in an inactive product. Therefore, a number of parameters that had an effect on productivity as well as product quality were examined. Results suggest that the choice of the host cell line had a significant effect on the overall product quality. Product expressed in mouse myeloma host cell lines had a lesser degree of proteolytic degradation and variability in O‐linked glycosylation as compared to that expressed in CHO host cell lines. The choice of a specific CHOK1SV derived clone also had an effect on the product quality. In general, molecules that exhibited minimal N‐terminal clipping had increased level of O‐linked glycosylation in the linker region, giving credence to the hypothesis that O‐linked glycosylation acts to protect against proteolytic degradation. Moreover, products with reduced potential for N‐terminal clipping had longer in vivo serum half‐life. These findings suggest that early monitoring of product quality should be an essential part of production cell line development and therefore, has been incorporated in our process of cell line development for this class of molecules. Biotechnol. Bioeng. 2009;103: 162–176. © 2008 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号