首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
REV-ERB nuclear receptors have been believed to stabilize the circadian clock machinery through an accessory but dispensable feedback loop. Recent work now challenges this assumption by demonstrating that REV-ERBs are essential core clock components, in addition to serving as pivotal regulators of rhythmic metabolism.  相似文献   

3.
4.
5.
6.
The circadian clock has a central role in physiological adaption and anticipation of day/night changes. In a genetic screen for novel regulators of circadian rhythms, we found that mice lacking MAGED1 (Melanoma Antigen Family D1) exhibit a shortened period and altered rest–activity bouts. These circadian phenotypes are proposed to be caused by a direct effect on the core molecular clock network that reduces the robustness of the circadian clock. We provide in vitro and in vivo evidence indicating that MAGED1 binds to RORα to bring about positive and negative effects on core clock genes of Bmal1, Rev‐erbα and E4bp4 expression through the Rev‐Erbα/ROR responsive elements (RORE). Maged1 is a non‐rhythmic gene that, by binding RORα in non‐circadian way, enhances rhythmic input and buffers the circadian system from irrelevant, perturbing stimuli or noise. We have thus identified and defined a novel circadian regulator, Maged1, which is indispensable for the robustness of the circadian clock to better serve the organism.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Biological rhythms are orchestrated by a cell-autonomous clock system that drives the rhythmic cascade of clock genes. We established an assay system using NIH 3T3 cells stably expressing the Bmal1 promoter-driven luciferase reporter gene and used it to analyse circadian oscillation of the gene. Modulators of PKC (protein kinase C) revealed that an activator and an inhibitor represented short- and long-period phenotypes respectively which were consistent with reported effects of PKC on the circadian clock and validated the assay system. We examined the effects of the alkaloid harmine, contained in Hoasca, which has a wide spectrum of pharmacological actions, on circadian rhythms using the validated assay system. Harmine dose dependently elongated the period. Furthermore, EMSA (electrophoretic mobility-shift assay) and Western-blot analysis showed that harmine enhanced the transactivating function of RORα (retinoid-related orphan receptor α), probably by increasing its nuclear translocation. Exogenous expression of RORα also caused a long period, confirming the phenotype indicated by harmine. These results suggest that harmine extends the circadian period by enhancing RORα function and that harmine is a new candidate that contributes to the control of period length in mammalian cells.  相似文献   

15.
16.
17.
18.
19.
ABSTRACT: BACKGROUND: microRNAs (miRNAs) are shown to be involved in the regulation of circadian clock. However, it remains largely unknown whether miRNAs can regulate the core clock genes (Clock and Bmal1). RESULTS: In this study, we found that mir-142-3p directly targeted the 3'UTR of human BMAL1 and mouse Bmal1. The over-expression (in 293ET and NIH3T3 cells) and knockdown (in U87MG cells) of mir-142-3p reduced and up-regulated the Bmal1/BMAL1 mRNA and protein levels, respectively. Moreover, the expression level of mir-142-3p oscillated in serum-shocked NIH3T3 cells and the results of ChIP and luciferase reporter assays suggested that the expression of mir-142-3p was directly controlled by CLOCK/BMAL1 heterodimers in NIH3T3 cells. CONCLUSIONS: Our study demonstrates that mir-142-3p can directly target the 3'UTR of Bmal1. In addition, the expression of mir-142-3p is controlled by CLOCK/BMAL1 heterodimers, suggesting a potential negative feedback loop consisting of the miRNAs and the core clock genes. These findings open new perspective for studying the molecular mechanism of circadian clock.  相似文献   

20.
In mammals, the circadian oscillator within the suprachiasmatic nuclei (SCN) entrains circadian clocks in numerous peripheral tissues. Central and peripheral clocks share a molecular core clock mechanism governing daily time measurement. In the rat SCN, the molecular clockwork develops gradually during postnatal ontogenesis. The aim of the present work was to elucidate when during ontogenesis the expression of clock genes in the rat liver starts to be rhythmic. Daily profiles of mRNA expression of clock genes Per1, Per2, Cry1, Clock, Rev-Erbalpha, and Bmal1 were analyzed in the liver of fetuses at embryonic day 20 (E20) or pups at postnatal age 2 (P2), P10, P20, P30, and in adults by real-time RT-PCR. At E20, only a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Cry1 but no clear circadian rhythms in expression of other clock genes were detectable. At P2, a high-amplitude rhythm in Rev-Erbalpha and a low-amplitude variation in Bmal1 but no rhythms in expression of other genes were detected. At P10, significant rhythms only in Per1 and Rev-Erbalpha expression were present. At P20, clear circadian rhythms in the expression of Per1, Per2, Rev-Erbalpha, and Bmal1, but not yet of Cry1 and Clock, were detected. At P30, all clock genes were expressed rhythmically. The phase of the rhythms shifted between all studied developmental periods until the adult stage was achieved. The data indicate that the development of the molecular clockwork in the rat liver proceeds gradually and is roughly completed by 30 days after birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号