首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Peaches (Prunus persica cv. Hermoza) were stored at 0C in regular air (RA) or in controlled atmosphere (CA 10% CO2, 3% O2) for 4 weeks and then ripened for 4 days at 20 degrees C. Woolliness developed in the regular air stored fruit while the controlled atmosphere stored fruit ripened normally. In the woolly fruit symptoms of the disorder were greater in the inner mesocarp than in the outer. Polygalacturonase (PG) and pectin esterase (PE) activities differed in the outer and inner mesocarp of the affected fruit. PG activity was low and PE activity was high in the inner mesocarp of the woolly fruit during ripening relative to the outer mesocarp, while in the healthy fruit, activities were similar in both areas. Cell wall fractions of water-soluble, CDTA-soluble and carbonate-soluble pectins were prepared from freshly harvested peaches and incubated with PE and PG from ripe peaches at different ratios. Only the CDTA-soluble fraction formed a gel with peach enzymes, and the rate of gelation increased with increasing amounts of PE relative to PG. Both water-soluble and CDTA-soluble pectin fractions formed gels with commercial PE (extracted from orange peel). The PE extracted from peaches was stable when stored at 0 degrees C for 9 days, while PG activity was stable only for 1 day. We suggest that PE, acting on pectins in the cell wall in vivo may cause gel formation and that the CDTA-soluble polymers have the capacity to bind apoplastic water and create the dry appearance observed in woolly fruit.  相似文献   

2.
Peach fruit ( Prunus persica cv. Hermosa) were allowed to ripen immediately after harvest or after 30 days of 0°C storage. The fruits lost 75–80% of their firmness after 5 days at 20°C. During ripening after harvest there was a loss of both uronic acid and methyl groups from the cell wall. Cell wall labelling with JIM 7, a monoclonal antibody which recognized pectins with a high degree of methylation, was lower in ripe fruits than in freshly harvested fruits. However, ripe fruit cell walls did not cross-react with JIM 5, which recognizes pectins with low methylation. During storage, de-methylation occurred and in fruit ripened after storage there was little further change in pectin methylation or pectin content in the cell walls. The labelling of stored or stored plus ripened cell walls with JIM 7 was similar, but the cell walls of fruit ripened after storage showed some low cross-reactivity with JIM 5. The in vitro activity and mRNA abundance of pectin esterase (EC 3.1.1.11) was not correlated with the amount of de-esterification as measured chemically or by immuno-labelling in the cell walls. Eighty percent of the fruits which ripened after storage developed a woolly texture. It is suggested that woolliness is due to de-esterification of pectins, not accompanied by depolymerization, which leads to the formation of a gel-like structure in the cell wall.  相似文献   

3.
Partially tree-ripened ripe fruit of peach (Prunus persica L.) were stored for 1-4 weeks at 5 degrees C and then ripened at 20 degrees C for 3 d to induce chilling injury. With increasing cold storage the incidence and severity of mealiness symptoms increased progressively, manifested as reduced quantities of free juice and internal flesh browning. Relative to juicy fruit, tissue of mealy fruit showed altered intercellular adhesion when examined by microscopy and, upon crushing, a higher proportion of cells remained intact and did not release cellular contents. Substantial alterations in the metabolism of cell wall polysaccharides were observed. Chelator-soluble polyuronides from mealy fruit were partially depolymerized during cold storage in a manner dissimilar to that in unripe or ripe juicy fruit, and were not depolymerized further during the ripening period. The solubility of these high molecular weight pectins remained low, and did not show the increase characteristic of juicy fruit. Furthermore, in mealy fruit the dramatic decline in the polymeric Ara content of base-soluble, matrix glycan-enriched fractions occurring during normal ripening was absent, indicating diminished disassembly of an arabinan-rich polysaccharide firmly attached to cellulose. A corresponding rise in the polymeric Ara content of the most soluble pectin fraction was also absent, as was a decline in the Gal content of this extract. The depolymerization of matrix glycans showed only minor differences between juicy and mealy fruit. After cold storage and ripening, the activities of endo-1,4-beta-glucanase (EC 3.2.1.4), endo-1,4-beta-mannanase (EC 3.2.1.78), beta-galactosidase (EC 3.2.1.23), alpha-arabinosidase (EC 3.2.1.55), and particularly endo-polygalacturonase (EC 3.2.1.15) were lower in mealy fruit than in juicy fruit, whereas pectin methylesterase activity (EC 3.1.1.11) was lower in slightly mealy and higher in very mealy fruit. The data suggest that cold storage affects the activities of numerous cell wall-modifying enzymes, with important consequences for pectin metabolism. These changes alter the properties of the primary wall and middle lamella, resulting in tissue breakage along enlarged air spaces, rather than across cells, which reduces the amount and availability of free juice upon tissue fragmentation.  相似文献   

4.
The role of ethylene in the prevention of chilling injury in nectarines   总被引:1,自引:0,他引:1  
Woolliness is a chilling injury phenomenon occurring in nectarines held at low temperatures for extended periods. It is a disorder marked by altered cell wall metabolism during ripening leading to a dry, woolly texture in the fruit. Two treatments were found to alleviate this disorder. One was holding the fruits for 2 days at 20 °C before 0 °C storage (delayed storage) and the second was having ethylene present during cold storage (ethylene). Immediately stored fruit (control) had 88 percnt; woolliness while 7 percnt; of delayed storage and 15 percnt; of ethylene fruit showed woolliness. The severity of the injury in individual fruits was closely related to inhibition of ethylene evolution. Woolly fruit had higher levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and less 1-aminocyclopropane-1-carboxylic acid oxidase (ACO, EC 1.4.3) activity than healthy fruit. It is suggested that ethylene is essential for promoting the proper sequence of cell wall hydrolysis necessary for normal fruit softening. This is in contrast to chilling injury in other fruits, whereby ethylene is often a sign of incipient damage. Respiration was also found to be associated with chilling injury, in that fruit with woolliness had a depressed respiration.  相似文献   

5.
6.
7.
The development of woolly breakdown in peaches stored at 0° was accompanied by increased activity of pectinesterase (PE) and inhibition of polygalacturonase (PG) activity. With intermittent warming of the fruit, which delayed the development of woolly breakdown, PG activity increased to levels measured in normally ripened fruit. It is proposed that the development of woolly breakdown in cold-stored peaches derives from an imbalance of pectolytic activity, whereby low temperatures induce PE to cause the accumulation of de-esterified pectate (soluble in EDTA) and inhibit PG from degrading this substrate.  相似文献   

8.
研究了白凤桃果实贮藏过程中光照条件对果实成熟的影响。在7月12日(未熟期)和7月16日(硬熟期)采收果实,分别贮藏在光条件(白色荧光灯照明,果顶部光强为80μmol m~(-2)s~(-1))和暗条件中,室温均为25℃。硬熟期采收果实贮藏在光条件下,达到完熟期时,乙烯生成量较低。果肉的硬度在各个采收期,各种贮藏条件下均没有差别。光条件贮藏果实中花青苷含量较高。未熟期采收果实贮藏在光条件下时,可溶性固形物含量增加较多。光条件贮藏果实中天冬酰胺的下降比暗贮藏果实中更多。各时期采收的果实中,在光下贮藏时,果肉和果皮γ-癸内酯和γ-十二内酯的含量都明显增加。以上结果表明,白凤桃果实采收后在光下贮藏,可以明显改善果实的品质。  相似文献   

9.
Electrical impedance measurements were used to characterize changes in intracellular and extracellular resistance as well as changes in the condition of membranes during ripening of nectarines (Prunus persica [L.] Batsch cv Fantasia). These measurements were related to changes in fruit texture assessed by flesh firmness and apparent juice content. An electrical model indicated that, during ripening (d 1-5) of freshly harvested fruit, the resistance of the cell wall and vacuole declined by 60 and 26%, respectively, and the capacitance of the membranes decreased by 9%. Accurate modeling of the impedance data required an additional resistance component. This resistance, which declined by 63% during ripening, was thought to be associated with either the cytoplasmic or membrane resistance. Changes in tissue resistance measured using low frequencies of alternating current were closely related to flesh firmness. After storage at 0[deg]C for 8 weeks, the nectarines developed a woolly (dry) texture during ripening at 20[deg]C. The main difference between these chilling-injured nectarines and fruit ripened immediately after harvest was the resistance of the cell wall, which was higher in woolly tissue (4435 [omega] after 5 d at 20[deg]C) than in nonwoolly tissue (2911 [omega] after 5 d at 20[deg]C). The results are discussed in relation to physiological changes that occur during the ripening and development of chilling injury in nectarine fruit.  相似文献   

10.
以‘雨花三号’水蜜桃果实为试材,分别在5℃(低温)和20℃(常温)贮藏一段时间后,研究桃果实采后细胞壁多糖降解、硬度以及乙烯释放速率的变化特征。结果表明,乙烯释放高峰明显滞后于果实采后硬度的快速下降期。不同温度下贮藏过程中果实细胞壁多糖变化的对比表明,低温抑制了细胞壁果胶和细胞壁其余组分的变化,从而抑制了果实的软化。富含半乳糖醛酸的果胶主链断裂。果胶和细胞壁其余组分也发生了半乳糖和阿拉伯糖等中性糖的损失,说明果胶和细胞壁其余组分的增溶及其侧链中性糖的降解也是桃果实采后软化的重要因素,这可能是由多种相关多糖降解酶的作用所导致的。但半纤维素多糖中中性糖的降解对桃果实采后软化的进程并没有影响。  相似文献   

11.
12.

Background  

Cold acclimation is the process by which plants adapt to the low, non freezing temperatures that naturally occur during late autumn or early winter. This process enables the plants to resist the freezing temperatures of winter. Temperatures similar to those associated with cold acclimation are also used by the fruit industry to delay fruit ripening in peaches. However, peaches that are subjected to long periods of cold storage may develop chilling injury symptoms (woolliness and internal breakdown). In order to better understand the relationship between cold acclimation and chilling injury in peaches, we isolated and functionally characterized cold-regulated promoters from cold-inducible genes identified by digitally analyzing a large EST dataset.  相似文献   

13.
14.
Three genes of the lipoxygenase (LOX) family in peach (Prunus persica var. compressa cv. Ruipan 4) were cloned, and their expression patterns during fruit ripening were analyzed using real-time quantitative PCR. All of the three peach LOX genes had been expressed during fruit ripening; however, their expression patterns were significantly different. During the normal ripening of peach fruits, the expression levels of PpLox1, PpLox2 and PpLox3 increased in varying degrees accompanying upsurge of ethylene evolution. After treated by methyl jasmonic acid (MeJA), the peak of ethylene releasing occurred in advance, and the declining rate of fruit hardness was accelerated, the expression level of the three peach LOX genes in fruits markedly enhanced at the early stage of storage, but significantly decreased at the late storage stage. So, it could be suggested that all three LOXs relate to fruit ripening; however, their functions might be different. PpLox1 expression increase along with the upsurge of ethylene evolution in both control and MeJA-treated peach fruits suggested that PpLox1 probably played a major role in the peach fruit ripening. Expression peak of PpLox2 appeared at the 1 DAH (days after harvest) in both control and MeJA-treated peach fruits, while obvious changes in ethylene evolution and fruit hardness was not observed, which suggested that the rise of PpLox2 expression can be induced by certain stimulation related to ripening, such as harvesting stress and MeJA treatment. The expression of PpLox3 kept a lower level in the natural ripening fruits, whereas raced up at the early stage of storage in the fruits treated with MeJA, which indicated that PpLox3 was expressed inductively and had minor roles during the normal ripening of peach fruits, but when encountered with external stimulation, its expression level would rapidly enhance and accelerate the ripening of peach fruit.  相似文献   

15.
16.
CO2 exchange rates (CO2 evolution) of late-maturing cv. Cal Red peaches, exposed to different photon flux densities, were simulated from 24 days after flowering (DAF) until harvest by using light and temperature response curves measured on attached fruits in the field at biweekly intervals. The daily patterns of dark respiration rates per unit dry weight indicated their dependence on temperatures. Fruit CO2 exchange rates in light were also affected by photosynthetic photon flux densities. Daily photosynthetic rates per unit dry weight and per fruit were significantly lower in shaded fruits receiving 7% of the full daily sunlight compared to fruits exposed to 35% sunlight. However, the difference in photosynthetic rates in peach fruits receiving 21 and 35% of total daily sunlight was small. Within the last 4 weeks before harvest, weekly carbohydrate requirements for the production of dry matter rose rapidly in cv. Cal Red peaches and were related to high carbohydrate accumulations, especially of sucrose, in the peach mesocarp. Weekly photosynthetic contribution of late-maturing cv. Cal Red peaches to these carbohydrate accumulations increased up to 115 DAF. A decline in photosynthetic contributions between 115 DAF and harvest was related to decreasing photosynthetic activities in association with declining chlorophyll contents. Photosynthesis of late-maturing cv. Cal Red peaches provided 3–9% of the weekly fruit carbohydrate requirements early in the season and 8–15% in the midseason depending on fruit exposure to light. Photosynthesis of mature fruits contributed 3–5% of the total fruit carbohydrate requirements. Since fruit photosynthetic rates approach saturation at a photosynthetic photon flux density of about 600 μmol m2 s?2, the difference in weekly photosynthetic contributions was small between exposed and partially exposed (35 and 21% sunlight, respectively) peach fruits. However, a shaded fruit (7% sunlight) supplied significantly less of its weekly carbohydrate requirements through photosynthesis compared to exposed fruits. During the growing period of 24 DAF until harvest, dry matter accumulation of latematuring cv. Cal Red peaches accounted for 78% of the total carbohydrate requirements and 22% was used in respiration. Fruit photosynthesis of shaded peach fruit, partially exposed fruit and exposed fruit (receiving 7. 21 and 35% of full sunlight over the day, respectively) contributed 5. 8 and 9%, respectively, of the total growth and maintenance carbohydrate requirements during the growing season.  相似文献   

17.
Iron enriched biosolids (FEB) from water treatment facilities are being used as an alternative to synthetic chelates in order to improve Fe uptake. The impact of this type of products on iron nutrition is not fully understood. Plant response depends on FEB composition, soil and climatic conditions and crop response. In order to study the effectiveness of FEB as fertilisers, two field experiments have been carried out. Two different commercial formulations of FEB (unmodified u-FEB and modified m-FEB) produced as a by-product of a drinking water treatment facility in Tampa (Florida, USA) were used. An orange tree (Citrus sinensis, cv. Navelina) and a peach tree (Prunus persica cv. Sudanell) field experiments took place in different locations in Spain. Macro and micronutrients were evaluated to assess mineral status of orange and peach leaf samples. Yield and fruit size were also determined. Despite the large amount of Fe bound by the organic matter on FEB, these products were less effective than synthetic chelates to improve iron uptake. No differences were found in orange yield or size. Results show that the ferric treatments improve fruit calibre, but not yield in peaches.  相似文献   

18.
Peach is an important stone fruit crop cultivated at commercial scale in Pakistan. While, appropriate selection of rootstock has significant impact on the quality of peach fruit. Therefore, in the current study the influence of three rootstocks viz. ‘GF-677′, ‘Peshawar Local’ and ‘Swat Local’ were evaluated on the quality of ‘Flordaking’ peaches following cold storage during two consecutive years. The fruit from these rootstocks were kept at 0 °C for five weeks were studied for various fruit physical (weight loss, colour, firmness) and biochemical (pH, soluble solids content (SSC), titratable acidity (TA), SSC:TA ratio, fruit juice pH, sugars (total, reducing and non-reducing sugars), ascorbic acid (vitamin C) and free radicals scavenging activities) were evaluated. During both years, fruit harvested form trees grafted on ‘GF-677′ exhibited reduced fruit weight loss, changes in Chroma (C*) and highest fruit firmness, Lightness (L*), ascorbic acid contents and radical scavenging activities as compared to fruit harvested from tree grafted on other rootstocks. In conclusion, the post-harvest quality of scion ‘Flordaking’ peach fruit was significantly influenced and best quality can be obtained when it is grafted on ‘GF-677′ rootstock.  相似文献   

19.
20.
The biosynthesis of volatile compounds in plants is affected by environmental conditions. Lactones are considered to be peach‐like aroma volatiles; however, no enzymes or genes associated with their biosynthesis have been characterized. White‐fleshed (cv. Hujingmilu) and yellow‐fleshed (cv. Jinxiu) melting peach (Prunus persica L. Batsch) fruit were used as materials in two successive seasons and responses measured to four different temperature treatments. Five major lactones accumulated during postharvest peach fruit ripening at 20 °C. Peach fruit at 5 °C, which induces chilling injury (CI), had the lowest lactone content during subsequent shelf life after removal, while 0 °C and a low‐temperature conditioning (LTC) treatment alleviated development of CI and maintained significantly higher lactone contents. Expression of PpACX1 and activity of acyl‐CoA oxidase (ACX) with C16‐CoA tended to increase during postharvest ripening both at 20 °C and during shelf life after removal from cold storage when no CI was developed. There was a positive correlation between ACX and lactones in peach fruit postharvest. Changes in lactone production in response to temperatures are suggested to be a consequence of altered expression of PpACX1 and long‐chain ACX activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号