首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A secreted counting factor (CF), regulates the size of Dictyostelium discoideum fruiting bodies in part by regulating cell-cell adhesion. Aggregation and the expression of adhesion molecules are mediated by relayed pulses of cAMP. Cells also respond to cAMP with a short cGMP pulse. We find that CF slowly down-regulates the cAMP-induced cGMP pulse by inhibiting guanylyl cyclase activity. A 1-min exposure of cells to purified CF increases the cAMP-induced cAMP pulse. CF does not affect the cAMP receptor or its interaction with its associated G proteins or the translocation of the cytosolic regulator of adenylyl cyclase to the membrane in response to cAMP. Pulsing streaming wild-type cells with a high concentration of cAMP results in the formation of small groups, whereas reducing cAMP pulse size with exogenous cAMP phosphodiesterase during stream formation causes cells to form large groups. Altering the extracellular cAMP pulse size does not phenocopy the effects of CF on the cAMP-induced cGMP pulse size or cell-cell adhesion, indicating that CF does not regulate cGMP pulses and adhesion via CF's effects on cAMP pulses. The results suggest that regulating cell-cell adhesion, the cGMP pulse size, or the cAMP pulse size can control group size and that CF regulates all three of these independently.  相似文献   

2.
Gao T  Knecht D  Tang L  Hatton RD  Gomer RH 《Eukaryotic cell》2004,3(5):1176-1184
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of approximately 20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin- cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB.  相似文献   

3.
Much remains to be understood about how a group of cells or a tissue senses and regulates its size. Dictyostelium discoideum cells sense and regulate the size of groups and fruiting bodies using a secreted 450-kDa complex of proteins called counting factor (CF). Low levels of CF result in large groups, and high levels of CF result in small groups. We previously found three components of CF (D. A. Brock and R. H. Gomer, Genes Dev. 13:1960-1969, 1999; D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, R. Ammann, and R. H. Gomer, Development 129:3657-3668, 2002; and D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, W. Jang, R. Ammann, and R. H. Gomer, Eukaryot. Cell 2:788-797, 2003). We describe here a fourth component, CF60. CF60 has similarity to acid phosphatases, although it has very little, if any, acid phosphatase activity. CF60 is secreted by starving cells and is lost from the 450-kDa CF when a different CF component, CF50, is absent. Although we were unable to obtain cells lacking CF60, decreasing CF60 levels by antisense resulted in large groups, and overexpressing CF60 resulted in small groups. When added to wild-type cells, conditioned starvation medium from CF60 overexpressor cells as well as recombinant CF60 caused the formation of small groups. The ability of recombinant CF60 to decrease group size did not require the presence of the CF component CF45-1 or countin but did require the presence of CF50. Recombinant CF60 does not have acid phosphatase activity, indicating that the CF60 bioactivity is not due to a phosphatase activity. Together, the data suggest that CF60 is a component of CF, and thus this secreted signal has four different protein components.  相似文献   

4.
Developing Dictyostelium cells aggregate to form fruiting bodies containing typically 2 × 104 cells. To prevent the formation of an excessively large fruiting body, streams of aggregating cells break up into groups if there are too many cells. The breakup is regulated by a secreted complex of polypeptides called counting factor (CF). Countin and CF50 are two of the components of CF. Disrupting the expression of either of these proteins results in cells secreting very little detectable CF activity, and as a result, aggregation streams remain intact and form large fruiting bodies, which invariably collapse. We find that disrupting the gene encoding a third protein present in crude CF, CF45-1, also results in the formation of large groups when cells are grown with bacteria on agar plates and then starve. However, unlike countin and cf50 cells, cf45-1 cells sometimes form smaller groups than wild-type cells when the cells are starved on filter pads. The predicted amino acid sequence of CF45-1 has some similarity to that of lysozyme, but recombinant CF45-1 has no detectable lysozyme activity. In the exudates from starved cells, CF45-1 is present in a ~450-kDa fraction that also contains countin and CF50, suggesting that it is part of a complex. Recombinant CF45-1 decreases group size in colonies of cf45-1 cells with a 50% effective concentration (EC50) of ~8 ng/ml and in colonies of wild-type and cf50 cells with an EC50 of ~40 ng/ml. Like countin and cf50 cells, cf45-1 cells have high levels of cytosolic glucose, high cell-cell adhesion, and low cell motility. Together, the data suggest that CF45-1 participates in group size regulation in Dictyostelium.  相似文献   

5.
The development of Dictyostelium discoideum is a model for tissue size regulation, as these cells form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). CF signal transduction involves decreasing intracellular CF glucose levels. A component of CF, countin, has the bioactivity of the entire CF complex, and an 8-min exposure of cells to recombinant countin decreases intracellular glucose levels. To understand how CF regulates intracellular glucose, we examined the effect of CF on enzymes involved in glucose metabolism. Exposure of cells to CF has little effect on amylase or glycogen phosphorylase, enzymes involved in glucose production from glycogen. Glucokinase activity (the first specific step of glycolysis) is inhibited by high levels of CF but is not affected by an 8-min exposure to countin. The second enzyme specific for glycolysis, phosphofructokinase, is not regulated by CF. There are two corresponding enzymes in the gluconeogenesis pathway, fructose-1,6-bisphosphatase and glucose-6-phosphatase. The first is not regulated by CF or countin, whereas glucose-6-phosphatase is regulated by both CF and an 8-min exposure to countin. The countin-induced changes in the Km and Vmax of glucose-6-phosphatase cause a decrease in glucose production that can account for the countin-induced decrease in intracellular glucose levels. It thus appears that part of the CF signal transduction pathway involves inhibiting the activity of glucose-6-phosphatase, decreasing intracellular glucose levels and affecting the levels of other metabolites, to regulate group size.  相似文献   

6.
Dictyostelium discoideum form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). The CF signal transduction pathway involves CF-repressing internal glucose levels by increasing the K(m) of glucose-6-phosphatase. Little is known about how this enzyme is regulated. Glucose-6-phosphatase is associated with microsomes in both Dictyostelium and mammals. We find that the activity of glucose-6-phosphatase in crude microsomes from cells with high, normal, or low CF activity had a negative correlation with the amount of CF present in these cell lines. In crude cytosols (supernatants from ultracentrifugation of cell lysates), the glucose-6-phosphatase activity had a positive correlation with CF accumulation. The crude cytosols were further fractionated into a fraction containing molecules greater than 10 kDa (S>10K) and molecules less than 10 KDa (S<10K). S>10K from wild-type cells strongly repressed the activity of glucose-6-phosphatase in wild-type microsomes, whereas S>10K from countin(-) cells (cells with low CF activity) significantly increased the activity of glucose-6-phosphatase in wild-type microsomes by decreasing K(m). The regulatory activities in the wild-type and countin(-) S>10Ks are heat-labile and protease-sensitive, suggesting that they are proteins. S<10K from both wild-type and countin(-) cells did not significantly change glucose-6-phosphatase activity. Together, the data suggest that, as a part of a pathway modulating multicellular group size, CF regulates one or more proteins greater than 10 KDa in crude cytosol that affect microsome-associated glucose-6-phosphatase activity.  相似文献   

7.
A remarkable aspect of Dictyostelium development is that cells form evenly sized groups of approximately 2 x 10(4) cells. A secreted 450 kDa protein complex called counting factor (CF) regulates the number of cells per group. We find that CF regulates group size by repressing cell-cell adhesion. In both experiments and computer simulations, high levels of CF (and thus low adhesion) result in aggregation streams breaking up into small groups, while no CF (and thus high adhesion) results in no stream breakup and large groups. These results suggest that in Dictyostelium and possibly other systems a secreted factor regulating cell-cell adhesion can regulate the size of a group of cells.  相似文献   

8.
Previous work has shown that cells developing at high density release a low-molecular-weight factor that can induce isolated Dictyostelium discoideum amoebae of strain V12M2 to differentiate into stalk cells in the presence of cyclic AMP. We now show that this differentiation-inducing factor, called DIF, can be extracted from cells during normal development and that its production is strongly developmentally regulated. DIF is not detectable in vegetative cells but rises dramatically after aggregation to reach a peak during slug migration. DIF levels are very low in two mutants defective in aggregation. The postaggregative synthesis of DIF is stimulated by the addition of extracellular cyclic AMP. We propose that DIF is a morphogen controlling prestalk cell differentiation.  相似文献   

9.
《The Journal of cell biology》1995,129(5):1251-1262
Dictyostelium discoideum initiates development when cells overgrow their bacterial food source and starve. To coordinate development, the cells monitor the extracellular level of a protein, conditioned medium factor (CMF), secreted by starved cells. When a majority of the cells in a given area have starved, as signaled by CMF secretion, the extracellular level of CMF rises above a threshold value and permits aggregation of the starved cells. The cells aggregate using relayed pulses of cAMP as the chemoattractant. Cells in which CMF accumulation has been blocked by antisense do not aggregate except in the presence of exogenous CMF. We find that these cells are viable but do not chemotax towards cAMP. Videomicroscopy indicates that the inability of CMF antisense cells to chemotax is not due to a gross defect in motility, although both video and scanning electron microscopy indicate that CMF increases the frequency of pseudopod formation. The activations of Ca2+ influx, adenylyl cyclase, and guanylyl cyclase in response to a pulse of cAMP are strongly inhibited in cells lacking CMF, but are rescued by as little as 10 s exposure of cells to CMF. The activation of phospholipase C by cAMP is not affected by CMF. Northern blots indicate normal levels of the cAMP receptor mRNA in CMF antisense cells during development, while cAMP binding assays and Scatchard plots indicate that CMF antisense cells contain normal levels of the cAMP receptor. In Dictyostelium, both adenylyl and guanylyl cyclases are activated via G proteins. We find that the interaction of the cAMP receptor with G proteins in vitro is not measurably affected by CMF, whereas the activation of adenylyl cyclase by G proteins requires cells to have been exposed to CMF. CMF thus appears to regulate aggregation by regulating an early step of cAMP signal transduction.  相似文献   

10.
11.
AP180, one of many assembly proteins and adaptors for clathrin, stimulates the assembly of clathrin lattices on membranes, but its unique contribution to clathrin function remains elusive. In this study we identified the Dictyostelium discoideum ortholog of the adaptor protein AP180 and characterized a mutant strain carrying a deletion in this gene. Imaging GFP-labeled AP180 showed that it localized to punctae at the plasma membrane, the contractile vacuole, and the cytoplasm and associated with clathrin. AP180 null cells did not display defects characteristic of clathrin mutants and continued to localize clathrin punctae on their plasma membrane and within the cytoplasm. However, like clathrin mutants, AP180 mutants, were osmosensitive. When immersed in water, AP180 null cells formed abnormally large contractile vacuoles. Furthermore, the cycle of expansion and contraction for contractile vacuoles in AP80 null cells was twice as long as that of wild-type cells. Taken together, our results suggest that AP180 plays a unique role as a regulator of contractile vacuole morphology and activity in Dictyostelium.  相似文献   

12.
A secreted 450-kDa complex of proteins called counting factor (CF) is part of a negative feedback loop that regulates the size of the groups formed by developing Dictyostelium cells. Two components of CF are countin and CF50. Both recombinant countin and recombinant CF50 decrease group size in Dictyostelium. countin- cells have a decreased cAMP-stimulated cAMP pulse, whereas recombinant countin potentiates the cAMP pulse. We find that CF50 cells have an increased cAMP pulse, whereas recombinant CF50 decreases the cAMP pulse, suggesting that countin and CF50 have opposite effects on cAMP signal transduction. In addition, countin and CF50 have opposite effects on cAMP-stimulated Erk2 activation. However, like recombinant countin, recombinant CF50 increases cell motility. We previously found that cells bind recombinant countin with a Hill coefficient of approximately 2, a KH of 60 pm, and approximately 53 sites/cell. We find here that cells also bind 125I-recombinant CF50, with a Hill coefficient of approximately 2, a KH of approximately 15 ng/ml (490 pm), and approximately 56 sites/cell. Countin and CF50 require each other's presence to affect group size, but the presence of countin is not necessary for CF50 to bind to cells, and CF50 is not necessary for countin to bind to cells. Our working hypothesis is that a signal transduction pathway activated by countin binding to cells modulates a signal transduction pathway activated by CF50 binding to cells and vice versa and that these two pathways can be distinguished by their effects on cAMP signal transduction.  相似文献   

13.
The metabolic syndrome, a common disorder including glucose intolerance and dyslipidemia, poses a major public health issue. Patients with high blood lipids, such as triglycerides, are at high risk in developing atherosclerotic cardiovascular diseases. To identify genes involved in metabolism, we performed RNA-seq experiments on the liver and fat in mice treated with a high-fat diet or fasting, and identified Gm6484 (named Lipasin) as a novel nutritionally regulated gene. Human LIPASIN is liver specific, while the mouse one is enriched in the liver and fat, including both brown and white adipose tissues. Obesity increases liver Lipasin, whereas fasting reduces its expression in fat. ANGPTL3 (Angiopoietin-like 3) and ANGPTL4 are critical regulators of blood lipids. LIPASIN shares homology with ANGPTL3's N-terminal domain that is needed for lipid regulation, and with ANGPTL4's N-terminal segment that mediates lipoprotein lipase (LPL) binding. Lipasin overexpression by adenoviruses in mice increases serum triglyceride levels, and a recombinant Lipasin inhibits LPL activity. Therefore, a potential mechanism for Lipasin-mediated triglyceride elevation is through reduced triglyceride clearance by LPL inhibition. Lipasin is thus a novel nutritionally-regulated liver-enriched factor that plays a role in lipid metabolism.  相似文献   

14.
T Kawata  A Early    J Williams 《The EMBO journal》1996,15(12):3085-3092
The ecmA gene is expressed in Dictyostelium prestalk cells and is inducible by differentiation-inducing factor (DIF), a low-molecular-weight lipophilic substance. The ecmB gene is expressed in stalk cells and is under negative control by two repressor elements. Each repressor element contains two copies of the sequence TTGA in an inverted relative orientation. There are activator elements in the ecmA promoter that also contain two TTGA sequences, but in the same relative orientation. Gel retardation assays suggest that the same protein binds to the ecmB repressor and the ecmA activator. We propose that DIF induces prestalk cell differentiation by activating this protein and that the protein also binds to the promoters of stalk-specific genes, acting as a repressor that holds cells in the prestalk state until culmination is triggered.  相似文献   

15.
Developing Dictyostelium cells form evenly sized groups of approximately 2 x 10(4) cells. A secreted 450-kDa protein complex called counting factor (CF) regulates group size by repressing cell-cell adhesion and myosin polymerization and by increasing cAMP-stimulated cAMP production, actin polymerization, and cell motility. We find that CF regulates group size in part by repressing internal glucose levels. Transformants lacking bioactive CF and wild-type cells with extracellular CF depleted by antibodies have high glucose levels, whereas transformants oversecreting CF have low glucose levels. A component of CF, countin, affects group size in a manner similar to CF, and a 1-min exposure of cells to countin decreases glucose levels. Adding 1 mm exogenous glucose negates the effect of high levels of extracellular CF on group size and mimics the effect of depleting CF on glucose levels, cell-cell adhesion, cAMP pulse size, actin polymerization, myosin assembly, and motility. These results suggest that glucose is a downstream component in part of the CF signaling pathway and may be relevant to the observed role of the insulin pathway in tissue size regulation in higher eukaryotes.  相似文献   

16.
Programmed cell death can be divided into apoptosis and autophagic cell death. We describe the biological activities of TMEM166 (transmembrane protein 166, also known as FLJ13391), which is a novel lysosome and endoplasmic reticulum-associated membrane protein containing a putative TM domain. Overexpression of TMEM166 markedly inhibited colony formation in HeLa cells. Simultaneously, typical morphological characteristics consistent with autophagy were observed by transmission electron microscopy, including extensive autophagic vacuolization and enclosure of cell organelles by double-membrane structures. Further experiments confirmed that the overexpression of TMEM166 increased the punctate distribution of MDC staining and GFP-LC3 in HeLa cells, as well as the LC3-II/LC3-I proportion. On the other hand, TMEM166-transfected HeLa and 293T cells succumbed to cell death with hallmarks of apoptosis including phosphatidylserine externalization, loss of mitochondrial transmembrane potential, caspase activation and chromatin condensation. Kinetic analysis revealed that the appearance of autophagy-related biochemical parameters preceded the nuclear changes typical of apoptosis in TMEM166-transfected HeLa cells. Suppression of TMEM166 expression by small interference RNA inhibited starvation-induced autophagy in HeLa cells. These findings show for the first time that TMEM166 is a novel regulator involved in both autophagy and apoptosis.  相似文献   

17.
Cyclin A/Cdk2 plays an important role during S and G2/M phases of the eukaryotic cell cycle, but the mechanisms by which it regulates cell cycle events are not fully understood. We have biochemically purified and identified SCAPER, a novel protein that specifically interacts with cyclin A/Cdk2 in vivo. Its expression is cell cycle independent, and it associates with cyclin A/Cdk2 at multiple phases of the cell cycle. SCAPER localizes primarily to the endoplasmic reticulum. Ectopic expression of SCAPER sequesters cyclin A from the nucleus and results specifically in an accumulation of cells in M phase of the cell cycle. RNAi-mediated depletion of SCAPER decreases the cytoplasmic pool of cyclin A and delays the G1/S phase transition upon cell cycle re-entry from quiescence. We propose that SCAPER represents a novel cyclin A/Cdk2 regulatory protein that transiently maintains this kinase in the cytoplasm. SCAPER could play a role in distinguishing S phase- from M phase-specific functions of cyclin A/Cdk2.  相似文献   

18.
《The Journal of cell biology》1996,134(6):1543-1549
Starving Dictyostelium cells aggregate by chemotaxis to cAMP when a secreted protein called conditioned medium factor (CMF) reaches a threshold concentration. Cells expressing CMF antisense mRNA fail to aggregate and do not transduce signals from the cAMP receptor. Signal transduction and aggregation are restored by adding recombinant CMF. We show here that two other cAMP-induced events, the formation of a slow dissociating form of the cAMP receptor and the loss of ligand binding, which is the first step of ligand-induced receptor sequestration, also require CMF. Vegetative cells have very few CMF and cAMP receptors, while starved cells possess approximately 40,000 receptors for CMF and cAMP. Transformants overexpressing the cAMP receptor gene cAR1 show a 10-fold increase of [3H]cAMP binding and a similar increase of [125I]CMF binding; disruption of the cAR1 gene abolishes both cAMP and CMF binding. In wild-type cells, downregulation of cAR1 with high levels of cAMP also downregulates CMF binding, and CMF similarly downregulates cAMP and CMF binding. This suggests that the cAMP binding and CMF binding are closely linked. Binding of approximately 200 molecules of CMF to starved cells affects the affinity of the majority of the cAR1 cAMP receptors within 2 min, indicating that an amplifying mechanism allows one activated CMF receptor to regulate many cARs. In cells lacking the G-protein beta subunit, cAMP induces a loss of cAMP binding, but not CMF binding, while CMF induces a reduction of CMF binding without affecting cAMP binding, suggesting that the linkage of the cell density-sensing CMF receptor and the chemoattractant cAMP receptor is through a G-protein.  相似文献   

19.
In the development of the cellular slime mold Dictyostelium discoideum, two chlorinated compounds, the differentiation-inducing factors DIF-1 and DIF-2, play important roles in the regulation of both cell differentiation and chemotactic cell movement. However, the receptors of DIFs and the components of DIF signaling systems have not previously been elucidated. To identify the receptors for DIF-1 and DIF-2, we here performed DIF-conjugated affinity gel chromatography and liquid chromatography–tandem mass spectrometry and identified the glutathione S-transferase GST4 as a major DIF-binding protein. Knockout and overexpression mutants of gst4 (gst4 and gst4OE, respectively) formed fruiting bodies, but the fruiting bodies of gst4 cells were smaller than those of wild-type Ax2 cells, and those of gst4OE cells were larger than those of Ax2 cells. Both chemotaxis regulation and in vitro stalk cell formation by DIFs in the gst4 mutants were similar to those of Ax2 cells. These results suggest that GST4 is a DIF-binding protein that regulates the sizes of cell aggregates and fruiting bodies in D. discoideum.  相似文献   

20.
Tang Y  Gomer RH 《Eukaryotic cell》2008,7(10):1758-1770
An interesting but largely unanswered biological question is how eukaryotic organisms regulate the size of multicellular tissues. During development, a lawn of Dictyostelium cells breaks up into territories, and within the territories the cells aggregate in dendritic streams to form groups of ~20,000 cells. Using random insertional mutagenesis to search for genes involved in group size regulation, we found that an insertion in the cnrN gene affects group size. Cells lacking CnrN (cnrN) form abnormally small groups, which can be rescued by the expression of exogenous CnrN. Relayed pulses of extracellular cyclic AMP (cAMP) direct cells to aggregate by chemotaxis to form aggregation territories and streams. cnrN cells overaccumulate cAMP during development and form small territories. Decreasing the cAMP pulse size by treating cnrN cells with cAMP phosphodiesterase or starving cnrN cells at a low density rescues the small-territory phenotype. The predicted CnrN sequence has similarity to phosphatase and tensin homolog (PTEN), which in Dictyostelium inhibits cAMP-stimulated phosphatidylinositol 3-kinase signaling pathways. CnrN inhibits cAMP-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation, Akt activation, actin polymerization, and cAMP production. Our results suggest that CnrN is a protein with some similarities to PTEN and that it regulates cAMP signal transduction to regulate territory size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号