首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
Cocaine has a short half-life of only about an hour but its effects, predominantly on the central nervous system (CNS), are fairly long-lasting. Of all cells within the CNS, astrocytes may be the first to display cocaine toxicity owing to their relative abundance in the brain. Cocaine entry could trigger several early response changes that adversely affect their survival, and inhibiting these changes could conversely increase their rate of survival. In order to identify these changes and the minimal concentrations of cocaine that can elicit them in vitro, rat C6 astroglia-like cells were treated with cocaine (2–4 mM for 1h) and assayed for alterations in gross cell morphology, cytoplasmic vacuolation, viability, reactive oxygen species (ROS) generation, glutathione (GSH) levels, cell membrane integrity, F-actin cytoskeleton, and histone methylation. We report here that all of the above identified features are significantly altered by cocaine, and may collectively represent the key pathology underlying acute toxicity-mediated death of astroglia-like cells. Pretreatment of the cells with the clinically available antioxidant N-acetyl cysteine (NAC, 5 mM for 30 min) inhibited these changes during subsequent application of cocaine and mitigated cocaine-induced toxicity. Despite repeated cocaine exposure, NAC pretreated cells remained highly viable and post NAC treatment also increased viability of cocaine treated cells to a smaller yet significant level. We show further that this alleviation by NAC is mediated through an increase in GSH levels in the cells. These findings, coupled with the fact that astrocytes maintain neuronal integrity, suggest that compounds which target and mitigate these early toxic changes in astrocytes could have a potentially broad therapeutic role in cocaine-induced CNS damage.  相似文献   

3.
Cocaine Induces Apoptosis in Cortical Neurons of Fetal Mice   总被引:6,自引:1,他引:5  
Abstract: Exposure of fetal mouse brain cocultures to cocaine results selectively in the loss of neurites followed by neuronal death. By using enriched neuronal cultures, we here demonstrate that disappearance of neurons, when cultured with cocaine, is caused by apoptosis, based on (1) characteristic morphology of apoptotic nuclei at the level of neurons but not of glial cells by optic microscopy, and on total cell pellets by electron microscopy; (2) fragmentation of total DNA with a typical "ladder" pattern on agarose gels; (3) extensive in situ DNA fragmentation labeling (TUNEL method); and (4) prevention of cell loss by cycloheximide. The major metabolites of cocaine have no detectable effects on neurons, indicating that apoptosis is due to cocaine itself. Inappropriate neuronal apoptosis in cocaine-exposed fetal brain could perturb the neurodevelopmental program and contribute to the quantitative neuronal defects that are too frequently reported in the offspring of cocaine-abusing pregnant women.  相似文献   

4.
Maternal cocaine abuse may increase the incidence of perinatal asphyxia. In nonexposed asphyxiated neonates, decreased cerebrospinal fluid (CSF) cAMP concentrations are associated with poor neurological outcome. On the other hand, cocaine increases central nervous system (CNS) cAMP. Therefore, we hypothesized that in utero cocaine exposure may increase brain cAMP and thereby preserve cerebrovascular responses to cAMP-dependent stimuli following asphyxia. Pregnant pigs received either cocaine (1 mg/kg, i.v.) twice weekly during the last trimester or normal saline vehicle (sham-control) and were allowed to deliver vaginally at term. Cranial windows were implanted in the newborn pigs within the first week of life and used to collect CSF for cAMP determinations and to assess changes in pial arteriolar diameters (PAD). In the first part of the study, pial arteriolar responses to different vasodilator and vasoconstrictor stimuli were evaluated in piglets prior to asphyxia (n = 20). In newborn pigs exposed to cocaine, cerebrovascular responses to hypercapnia and norepinephrine were significantly exaggerated compared to controls. Then, piglets were randomly selected for the second part of the study that involved prolonged asphyxia (n = 12). In cocaine-exposed but not sham-control piglets, CSF cAMP increased markedly during asphyxia. In the sham piglets, but not the cocaine-exposed piglets, CSF cAMP fell progressively below the baseline during recovery. Cerebrovascular reactivity to cAMP-dependent stimuli (hypercapnia and isoproterenol) was preserved during recovery from asphyxia in the cocaine-exposed piglets but significantly attenuated in the sham controls. We conclude that piglets with chronic prenatal exposure to cocaine show exaggerated cerebrovascular responses to vasogenic stimuli and preserved cAMP-dependent cerebral vasoreactivity following asphyxia.  相似文献   

5.
Smoking has been associated with a large number of diseases, in particular cancers. Among the many substances identified in tobacco smoke, reactive oxygen species (ROS) are major carcinogens. We have previously reported that exposure of mammalian cells to tobacco smoke induces the expression of stress proteins, as well as apoptosis (programmed cell death). Here we examined the effects of tobacco smoke on mitochondrial membrane potential (deltapsim), since mitochondria have been proposed to control the effector phase of apoptosis. We used normal human monocytes for these experiments, with the prospect for application of deltapsim as a biomarker of oxidative stress. Tobacco smoke induced mitochondrial depolarization at 3 h, and apoptosis (or necrosis for higher concentrations) after 16 h. Apoptosis was assessed by both a functional approach (annexin V binding) and morphological analysis (electron microscopy). N-acetyl-cysteine prevented tobacco smoke-induced deltapsim disruption and apoptosis, while the caspase inhibitor Z-VAD.Fmk did not affect deltapsim, though preventing apoptosis, and superoxide dismutase had no effect. Our data designate mitochondria as a target for ROS-mediated effects of tobacco smoke exposure.  相似文献   

6.
Cocaine exposure results in aberrant outgrowth and decreased survival for locus coeruleus (LC), a noradrenergic population of neurons that putatively regulates attentional function; however, the underlying mechanisms for these events are not known. We previously showed that cocaine exposure in vitro activates pro-apoptotic Bax, caspase-9, and caspase-3 in LC neurons dissected from embryonic day 14 rats, implicating that apoptosis may be orchestrated via signal transduction events. In the current study in vitro, we examined upstream events to determine the role of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-alpha), on LC signal transduction, because cocaine exposure to LC neurons triggered TNF-alpha expression at 30 min as measured by ELISA. Exposure of LC neurons to recombinant-TNF-alpha resulted in decreased metabolic activity, an indicator of reduced neuron viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], and increased apoptosis (terminal deoxynucleotidyl transferase-mediated DNA nick end labeling assay). Pro-apoptotic caspase-3 was induced by cocaine starting at 30 min. Recombinant-TNF-alpha induced caspase-3 activity earlier than cocaine (15 and 20 min). The caspase-3 levels were significantly reduced when cocaine and TNF-alpha were combined with neutralizing-TNF-alpha (nTNF-alpha), respectively. Further, cocaine alone elevated phospho-p38-mitogen-activated protein kinases that persisted when combined with nTNF-alpha. However, both cocaine and TNF-alpha independently increased phospho-c-Jun NH(2)-terminal kinase and Bax levels at concurrent time periods (30 min and 1 h), and this elevation was attenuated in the presence of nTNF-alpha. These simultaneous molecular events triggered by cocaine and TNF-alpha implicate a potential apoptotic signal transduction pathway via induction of phospho-c-Jun NH(2)-terminal kinase and Bax that may lead to caspase-3 activation and apoptosis in cocaine-exposed fetal LC neurons.  相似文献   

7.
Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 microM H(2)O(2)), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H(2)O(2) cell death cumulated gradually, reaching a maximum level 8 h after H(2)O(2) withdrawal. By comparison, sustained exposure to H(2)O(2) caused complete cell death within a narrow time frame (2 h). The time-dependent post-H(2)O(2) cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H(2)O(2) addition or after H(2)O(2) withdrawal prevented the H(2)O(2)-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.  相似文献   

8.
Alteration in the lysosomal system (LS) may represent a central mechanism in neurodegeneration. 6-Hydroxydopamine (6-OHDA) induces oxidative stress and cell death in catecholaminergic cells. The LS and caspases participate in apoptosis, although the mechanism(s) that is involved is not completely understood. Here, we show that Pheochromocytoma (PC12) cells exposed to 6-OHDA results in lysosomal dysregulation, caspase activation and cell death. Cells exposed to 6-OHDA increased expression and release of cystatin C (CC) and suppressed cathepsin B (CB). CB activity significantly declined 24h following exposure to 6-OHDA, however neutralization of CC restored CB activity. Cathepsin D (CD) and caspase-3 activity also increased following exposure to 6-OHDA. Inhibition of CD and caspase-3 with pepstatin A (PA) and DEVD-Cho, respectively, attenuated the 6-OHDA induced cell death at 48 and 72 h. However, the CB inhibitor CA-074 Me failed to protect cells. Additionally, poly-ADP-ribose polymerase (PARP) cleavage was evaluated after exposure to 6-OHDA and PA, CA-074 Me, and DEVD-Cho. Only DEVD-Cho significantly decreased PARP cleavage following exposure to 6-OHDA. Hence, caspase-3 mediated PARP cleavage following exposure to 6-OHDA appears independent of CB and CD alterations. These studies suggest alternate pathways and potential therapeutic targets of cell death associated with oxidative stress, CC, and lysosomal dysregulation.  相似文献   

9.
Although the underlying cause of Parkinson's disease (PD) is not well characterized, epidemiological studies suggest that exposure to agricultural chemicals is a risk factor for PD. Fluazinam (FZN) is a new active ingredient for the control of grey mould, belonging to the novel broad spectrum phenylpyridinamine fungicides. We used human neuroblastoma SH-SY5Y cells to investigate mechanisms of dopaminergic cell death in response to FZN. FZN treatment produced dose-dependent cytotoxicity, and decreased the tyrosine hydroxylase (TH) expression in SH-SY5Y cells. We provided evidence for the occurrence of oxidative stress and oxidative damage during FZN exposure on dopaminergic cells through the measurement of reactive oxygen species (ROS) in cells with DCFH-DA. The cytotoxic effects of FZN appear to involve an increase in ROS generation since pretreatment with N-acetyl cysteine (NAC), an anti-oxidant, reduced cell death. After FZN treatment, dopamine (DA) levels decreased in both cell and culture media, and oxidative effects of FZN were blocked by NAC pretreatment. We show that cell death in response to FZN was due to apoptosis since FZN exposure results in an increased in cytochrome c release into the cytosol and activated caspase-3 through p38 and JNK signaling. Furthermore, the blocking of p38 or JNK signaling inhibits FZN-induced cell death. Phosphorylation of mitogen-activated protein kinases precedes cytochrome c release and caspase-3 activation. This cellular response is characteristic of mitochondrial dysfunction. Therefore, we also investigated the effect of FZN on mitochondrial complex I activity in FZN-treated cell. Interestingly, we show that FZN inhibited the complex I activity. Thus in this study, we report a new mode of action by which the fungicide FZN could triggers apoptosis.  相似文献   

10.
Oxidative stress-induced apoptosis of endothelial cells   总被引:7,自引:0,他引:7  
Endothelial cells (ECs) are subjected to oxidative stress during many pathological processes, including ischemia/reperfusion and general inflammation. In the present study, we examined the effects of oxidative stress on rates of apoptosis in EC cultures. We treated large and microvessel ECs with menadione for 1 h in vitro to simulate the most common physiological form of oxidative stress, exposure to O2*-. Capillary ECs were resistant to menadione-induced apoptosis when compared with large-vessel ECs. Treatment with 35 microM menadione resulted in an apoptotic rate of approximately 5% in capillary EC cultures compared with approximately 45% in large-vessel EC cultures. At higher concentrations of menadione (35-75 microM), both types of ECs exhibited a concentration-related increase in apoptosis. Necrotic cell death only became evident at menadione concentrations ranging from 75-100 microM for both cell types. The timing of the apoptotic response to a 1 h menadione exposure was very specific. For both EC types, peaks of apoptosis occurred in two distinct waves, at 6-8 and 18-22 h after treatment. Analysis of the events leading up to the first peak of apoptosis indicated that specific matrix metalloproteinases (MMPs) were activated, suggesting that MMPs may be involved in initiating the apoptotic process.  相似文献   

11.
Astrocytes, the most abundant glial cell population in the central nervous system (CNS), play physiological roles in neuronal activities. Oxidative insult induced by the injury to the CNS causes neural cell death through extrinsic and intrinsic pathways. This study reports that reactive oxygen species (ROS) generated by exposure to the strong oxidizing agent, hexavalent chromium (Cr(VI)) as a chemical‐induced oxidative stress model, caused astrocytes to undergo an apoptosis‐like cell death through a caspase‐3‐independent mechanism. Although activating protein‐1 (AP‐1) and NF‐κB were activated in Cr(VI)‐primed astrocytes, the inhibition of their activity failed to increase astrocytic cell survival. The results further indicated that the reduction in mitochondrial membrane potential (MMP) was accompanied by an increase in the levels of ROS in Cr(VI)‐primed astrocytes. Moreover, pretreatment of astrocytes with N‐acetylcysteine (NAC), the potent ROS scavenger, attenuated ROS production and MMP loss in Cr(VI)‐primed astrocytes, and significantly increased the survival of astrocytes, implying that the elevated ROS disrupted the mitochondrial function to result in the reduction of astrocytic cell viability. In addition, the nuclear expression of apoptosis‐inducing factor (AIF) and endonuclease G (EndoG) was observed in Cr(VI)‐primed astrocytes. Taken together, evidence shows that astrocytic cell death occurs by ROS‐induced oxidative insult through a caspase‐3‐independent apoptotic mechanism involving the loss of MMP and an increase in the nuclear levels of mitochondrial pro‐apoptosis proteins (AIF/EndoG). This mitochondria‐mediated but caspase‐3‐independent apoptotic pathway may be involved in oxidative stress‐induced astrocytic cell death in the injured CNS. J. Cell. Biochem. 107: 933–943, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
An emerging hypothesis considers the process of neuronal apoptosis as a consequence of unscheduled and unsynchronized induction of cell cycle mediators. Induction of several cell cycle genes precedes neuronal apoptosis and may be involved in determination of cell fate. We have now characterized changes in expression of cell cycle genes during apoptosis induced by oxidative stress in chick post-mitotic sympathetic neurons. Induction of cyclin B occurred prior to the commitment of neurons to both dopamine- and peroxide-triggered apoptosis. Both the neuronal death and the rise in cyclin B were inhibited by antioxidant treatment, suggesting a functional role for cyclin B induction during neuronal apoptosis. Induction of the cyclin dependent kinase CDK5 protein coincided with the time point when neurons were irreversibly committed to die. Expression of other cell cycle mediators such as cyclin D1 and the cyclin dependent kinases CDC2 and CDK2 was undetected and not induced by exposure to oxidative stress. Comparative analysis of the profile of cell cycle mediators induced during neuronal apoptosis of different neuronal cell populations revealed no distinct pattern of events. There are no cell cycle stage-specific mediators that are ultimately stimulated during neuronal apoptosis, suggesting that multiple pathways of re-activating the dormant cell-cycle, converge to determine entry into apoptosis. Nevertheless, the existence of some cell cycle mediators, that were not reported so far to be induced in post mitotic neurons during oxidative stress, substantiate them as part of the strong differentiating forces.  相似文献   

13.
During cocaine-induced hepatotoxicity, lipid accumulation occurs prior to necrotic cell death in the liver. However, the exact influences of cocaine on the homeostasis of lipid metabolism remain largely unknown. In this study, the progression of subacute hepatotoxicity, including centrilobular necrosis in the liver and elevation of transaminase activity in serum, was observed in a three-day cocaine treatment, accompanying the disruption of triacylglycerol (TAG) turnover. Serum TAG level increased on day 1 of cocaine treatment but remained unchanged afterwards. In contrast, hepatic TAG level was elevated continuously during three days of cocaine treatment and was better correlated with the development of hepatotoxicity. Lipidomic analyses of serum and liver samples revealed time-dependent separation of the control and cocaine-treated mice in multivariate models, which was due to the accumulation of long-chain acylcarnitines together with the disturbances of many bioactive phospholipid species in the cocaine-treated mice. An in vitro function assay confirmed the progressive inhibition of mitochondrial fatty acid oxidation after the cocaine treatment. Cotreatment of fenofibrate significantly increased the expression of peroxisome proliferator-activated receptor α (PPARα)-targeted genes and the mitochondrial fatty acid oxidation activity in the cocaine-treated mice, resulting in the inhibition of cocaine-induced acylcarnitine accumulation and other hepatotoxic effects. Overall, the results from this lipidomics-guided study revealed that the inhibition of fatty acid oxidation plays an important role in cocaine-induced liver injury.  相似文献   

14.
Arachidonic acid (AA)-induced cytotoxicity was evaluated in leukocytes: the human leukemia cell lines HL-60, Jurkat and Raji and in rat lymphocytes. Such cytotoxicity was dose- and time-dependent. At concentrations below 5 microM, AA was not toxic; at 10-400 microM, AA induced apoptosis and at concentrations beyond 400 microM, necrosis. The minimum exposure time to trigger cell death was of around 1 h, but the effect was increased by longer exposure times until 6-24 h. Apoptosis was morphologically characterized by a decrease in cell and nuclear volume, chromatin condensation and DNA fragmentation and the presence of lipid bodies, without changes in organelle integrity. Biochemically, AA-induced apoptosis was associated with internucleosomal fragmentation and caspase activation, evaluated by PARP cleavage and the use of a caspase inhibitor. Necrosis was characterized by increased cell volume, presence of loose chromatin, appearance of vacuoles, loss of membrane integrity and of the definition of organelles. The apoptotic effect of AA was studied as to oxidative-reductive imbalance and the participation of eicosanoids. Apoptotic AA treatment was accompanied by an increase in the quantity of thiobarbituric acid reactive substances (TBARS), low-level chemiluminescence and in the glutathione disulfide/reduced glutathione ratio, indicating oxidative stress. The addition of tocopherol, ascorbate, prostaglandin E2 and lipoxygenase inhibitors delayed cell death, whereas the inhibition of cyclooxygenase promoted AA-induced cell death. Cell treatment with AA was accompanied by increased cellular production of LTB4. AA, therefore, is cytotoxic at physiological and supraphysiological concentrations, causing apoptosis and necrosis. Cell treatment with apoptotic concentrations of AA involves oxidative stress and changes in eicosanoid biosynthesis.  相似文献   

15.
Intermittent hypoxia (IH), such as occurs in sleep apnea, induces increased oxidative stress and is associated with altered glucose homeostasis. Because pancreatic β cells are very sensitive to oxidative stress we tested whether they could be affected by IH. The effects of IH exposure (24 h/day, 5.7 and 21% O2 alternation) in mice on β-cell proliferation and β-cell death were tested using Ki67 staining and TUNEL staining, respectively. To assess the role of oxidative stress in these processes, transgenic mice with β-cell-specific overexpression of the antioxidant protein MnSOD were exposed to IH. After 4 days of IH exposure, β-cell proliferation was increased almost fourfold. Coinciding with the increase in proliferation, the subcellular localization of the cell cycle regulator cyclin D2 was increased in the nucleus. In addition, β-cell death was increased approximately fourfold. MnSOD transgene did not alter the effects of IH on β-cell proliferation, but completely abrogated the IH effects on cell death. Thus, IH exposure that mimics sleep apnea can lead to increased β-cell proliferation and cell death. Furthermore, the cell death response seems to be due to oxidative stress.  相似文献   

16.
We examined how oxidative stress and cell damage develop in the liver of rats subjected to water-immersion stress (WIRS). In rats subjected to WIRS for 1.5, 3 or 6 h, serum alanine aminotransferase and aspartate aminotransferase activities increased time-dependently. In the liver tissue, vacuolization and apoptosis occurred at 1.5 h of WIRS and vacuolization further developed without further appearance of apoptosis at 3 h or 6 h. Serum lipid peroxide (LPO) and NOx (nitrite/nitrate) concentrations increased at 3 h of WIRS and these increases were enhanced at 6 h. In liver tissue, increases in LPO and NOx concentrations and myeloperoxidase activity and decreases in ascorbic acid and reduced glutathione concentrations and superoxide dismutase activity occurred at 3 h of WIRS and these changes were enhanced at 6 h, although vitamin E concentration and xanthine oxidase activity were unchanged. These results indicate that oxidative stress in the liver of rats with WIRS develops after the appearance of cell damage in the tissue, and suggests that oxidative stress is caused through disruption of the antioxidant defense system and increases in NO generation and neutrophil infiltration in the liver, which may contribute to the progression of cell damage in the tissue.  相似文献   

17.
Oxidative stress and apoptosis facilitation in the developing central nervous system (CNS) have been inferred as two mechanisms related to lead’s neurotoxicity, and excessive reactive oxygen species (ROS) can promote oxidative stress and apoptosis facilitation. Few studies systematically investigated the potential relationship among oxidative stress, ROS generation, and apoptosis facilitation after lead exposure in earlier life as a whole. To better understand the adverse effect on the developing central nervous system (CNS) after lead exposure during pregnancy and lactation, the indexes of oxidative stress, apoptosis status, and Bax and Bcl-2 expression of offspring rats’ hippocampus were determined. Pregnant rats were randomly divided into four groups and given free access to drinking water which contained 0 %, 0.05 %, 0.1 %, and 0.2 % Pb(AC)2 respectively from gestation day 0 to postnatal day 21 (PND21). Results showed that ROS and malondialdehyde level of either PND7 or PND21 pups’ hippocampus were significantly raised; reduced glutathione level and superoxide dismutase activity were obviously decreased following the increase of blood and brain lead level. Similar to apoptotic indexes, Bax/Bcl-2 ratio increased after 0.1 % and 0.2 % Pb(AC)2 exposure, especially for the pups on PND7. Comparing with cortex, the hippocampus seemed much more sensitive to damage induced by lead. We concluded that the disruption of pro-oxidant and antioxidant balance and apoptosis facilitation could be associated with the mechanisms of neurotoxicity after lead exposure in earlier life.  相似文献   

18.
Nitric oxide and reactive oxygen species play a critical role in photoreceptor apoptosis. However, the exact molecular mechanisms triggered by oxidative stress in photoreceptor cell death remain undefined. Here, we demonstrate that the sphingolipid ceramide is the key mediator of oxidative stress-induced apoptosis in 661W retinal photoreceptor cells. Treatment of 661W cells with the nitric oxide donor, sodium nitroprusside, activates acid sphingomyelinase. As a result, sphingomyelin is hydrolysed, which leads to an increase in the concentration of ceramide. We also show that ceramide is responsible for the activation of the mitochondrial apoptotic pathway in 661W photoreceptor cells and subsequent activation of the caspase cascade. Furthermore, we show for the first time that ceramide is responsible for the increased Ca2+ levels in the mitochondria and cytosol that precedes activation of the calpain-mediated apoptotic pathway. Additionally, we provide evidence that ceramide also activates the endolysosomal protease cathepsin D pathway. In summary, our findings show that ceramide controls the cell death decisions in photoreceptor cells and highlight the relevance of acid sphingomyelinase as a potential therapeutic target for the treatment of retinal pathologies.  相似文献   

19.
Tumor necrosis factor α (TNF-α) receptor-associated factor 2 (TRAF2) regulates activation of the c-Jun N-terminal kinase (JNK)/c-Jun and the inhibitor of κB kinase (IKK)/nuclear factor κB (NF-κB) signaling cascades in response to TNF-α stimulation. Gene knockout studies have revealed that TRAF2 inhibits TNF-α-induced cell death but promotes oxidative stress-induced apoptosis. Here we report that TNF-α and oxidative stress both induce TRAF2 phosphorylation at serines 11 and 55 and that this dual phosphorylation promotes the prolonged phase of IKK activation while inhibiting the prolonged phase of JNK activation. Prolonged IKK activation trigged by TNF-α plays an essential role in efficient expression of a subset of NF-κB target genes but has no substantial role in TNF-α-induced cell death. On the other hand, TRAF2 phosphorylation in response to oxidative stress significantly promotes cell survival by inducing prolonged IKK activation and by inhibiting the prolonged phase of JNK activation. Notably, stable expression of phospho-null mutant TRAF2 in cancer cells leads to an increase in the basal and inducible JNK activation and B-cell lymphoma 2 (Bcl-2) phosphorylation. In addition, exposure of cells expressing phospho-null mutant TRAF2 to sublethal oxidative stress results in a rapid degradation of Bcl-2 and cellular inhibitor of apoptosis 1 as well as significantly increased cell death. These results suggest that TRAF2 phosphorylation is essential for cell survival under conditions of oxidative stress.  相似文献   

20.
Endothelial dysfunction and cell death play an important role in pathogenesis of atherosclerosis. 7-Oxysterols, the major cytotoxic component found in oxidized low-density lipoprotein, are toxic to endothelial cells. However, the pathways and molecular mechanism involved in the process remain incompletely understood. In this study, we first investigate whether 7β-hydroxycholesterol (7βOH) or 7-ketocholesterol (7keto) induces apoptosis of human endothelial cell line (HUVEC-CS). We then examine possible involved pathways by focusing on cellular lipid, lysosomal pathways, cellular oxidative stress and mitochondrial pathways. Our results for the first time showed that 7-oxysterols induced apoptotic cell death of HUVEC-CS after 24 h, which was preceded by early lipid accumulation (6 h) and lysosomal membrane permeabilization (6−12 h). Afterward, levels of reactive oxygen species, mitochondrial membrane permeabilization, and lysosomal cathepsin were increased assayed by immuno-cytochemistry and blotting. Notably, the exposure to 7βOH or 7keto induced expressions and secretion of isoforms of von Willebrand factor (VWF). We conclude that apoptosis of HUVEC-CS induced by 7βOH or 7keto mediates by early lysosomal lipid accumulation and oxidative lysosomal pathways, which results in induction and release of VWF. The results suggest the cell death induced by 7-oxysterols may contribute to endothelial dysfunction and atherothrombosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号