首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gadda G  Fitzpatrick PF 《Biochemistry》2000,39(6):1406-1410
Nitroalkane oxidase catalyzes the oxidation of nitroalkanes to aldehydes or ketones with production of nitrite and hydrogen peroxide. pH and kinetic isotope effects with [1, 1-(2)H(2)]nitroethane have been used to study the mechanism of this enzyme. The V/K(ne) pH profile is bell-shaped. A group with a pK(a) value of about 7 must be unprotonated and one with a pK(a) value of 9.5 must be protonated for catalysis. The lower pK(a) value is seen also in the pK(is) profile for the competitive inhibitor valerate, indicating that nitroethane has no significant external commitments to catalysis. The (D)(V/K)(ne) value is pH-independent with a value of 7.5, whereas the (D)V(max) value increases from 1.4 at pH 8.2 to a limiting value of 7.4 below pH 5. The V(max) pH profile decreases at low and high pH, with pK(a) values of 6.6 and 9.5, respectively. Imidazole, which activates the enzyme, affects the V(max) but not the V/K(ne) pH profile. In the presence of imidazole at pH 7 the (D)V(max) value increases to a value close to the intrinsic value, consistent with cleavage of the carbon-hydrogen bond of the substrate being fully rate-limiting for catalysis in the presence of imidazole.  相似文献   

2.
Karsten WE  Liu D  Rao GS  Harris BG  Cook PF 《Biochemistry》2005,44(9):3626-3635
The pH dependence of kinetic parameters of several active site mutants of the Ascaris suum NAD-malic enzyme was investigated to determine the role of amino acid residues likely involved in catalysis on the basis of three-dimensional structures of malic enzyme. Lysine 199 is positioned to act as the general base that accepts a proton from the 2-hydroxyl of malate during the hydride transfer step. The pH dependence of V/K(malate) for the K199R mutant enzyme reveals a pK of 5.3 for an enzymatic group required to be unprotonated for activity and a second pK of 6.3 that leads to a 10-fold loss in activity above the pK of 6.3 to a new constant value up to pH 10. The V profile for K199R is pH independent from pH 5.5 to pH 10 and decreases below a pK of 4.9. Tyrosine 126 is positioned to act as the general acid that donates a proton to the enolpyruvate intermediate to form pyruvate. The pH dependence of V/K(malate) for the Y126F mutant is qualitatively similar to K199R, with a requirement for a group to be unprotonated for activity with a pK of 5.6 and a partial activity loss of about 3-fold above a pK of 6.7 to a new constant value. The Y126F mutant enzyme is about 60000-fold less active than the wild-type enzyme. In contrast to K199R, the V rate profile for Y126F also shows a partial activity loss above pH 6.6. The wild-type pH profiles were reinvestigated in light of the discovery of the partial activity change for the mutant enzymes. The wild-type V/K(malate) pH-rate profile exhibits the requirement for a group to be unprotonated for catalysis with a pK of 5.6 and also shows the partial activity loss above a pK of 6.4. The wild-type V pH-rate profile decreases below a pK of 5.2 and is pH independent from pH 5.5 to pH 10. Aspartate 294 is within hydrogen-bonding distance to K199 in the open and closed forms of malic enzyme. D294A is about 13000-fold less active than the wild-type enzyme, and the pH-rate profile for V/K(malate) indicates the mutant is only active above pH 9. The data suggest that the pK present at about pH 5.6 in all of the pH profiles represents D294, and during catalysis D294 accepts a proton from K199 to allow K199 to act as a general base in the reaction. The pK for the general acid in the reaction is not observed, consistent with rapid tautomerization of enolpyruvate. No other ionizable group in the active site is likely responsible for the partial activity change observed in the pH profiles, and thus the group responsible is probably remote from the active site and the effect on activity is transmitted through the protein by a conformational change.  相似文献   

3.
M Gómez  P Isorna  M Rojo  P Estrada 《Biochimie》2001,83(10):961-967
The variation of kinetic parameters of beta-xylosidase from Trichoderma reesei QM 9414 with pH was used to elucidate the chemical mechanism of the p-nitrophenyl beta-D-xylopyranoside hydrolysis. The pH-dependence of V and V/K(m) showed that a group on the enzyme with a pK value of 3.20 must be unprotonated and a group with a pK value of 5.20 must be protonated for activity and both are involved in catalysis. Solvent-perturbation studies indicated that these groups are neutral acid type. Temperature dependence of kinetic parameters suggested the stickiness of the substrate at lower temperatures than the optimum and the calculated ionization enthalpies pointed to carboxyl groups as responsible for both pKs. Chemical modification with triethyloxonium tetrafluoroborate and protection with the substrate studies demonstrated essential carboxyl groups on the enzyme. Profiles of pK(i) for D-gluconic acid lactone indicated that a group with a pK value of 3.45 must be protonated for binding and it has been assigned to the carboxyl group of D-gluconic acid formed by lactone ring breakdown in solution.  相似文献   

4.
The variation with pH of the kinetic parameters associated with the mutase and dehydrogenase reactions catalyzed by chorismate mutase-prephenate dehydrogenase has been determined with the aim of elucidating the role that ionizing amino acid residues play in binding and catalysis. The pH dependency of log V for the dehydrogenase reaction shows that the enzyme possesses a single ionizing group with a pK value of 6.5 that must be unprotonated for catalysis. This same group is observed in the V/Kprephenate, as well as in the V/KNAD, profile. The V/Kprephenate profile exhibits a second ionizing residue with a pK value of 8.4 that must be protonated for the binding of prephenate to the enzyme. For the mutase reaction, the V/Kchorismate profile indicates the presence of three ionizing residues at the active site. Two of these residues, with similar pK values of about 7, must be protonated, while the third, with a pK value of 6.3, must be unprotonated. It can be concluded that all three groups are concerned with the binding of chorismate to the enzyme since the maximum velocity of the mutase reaction is essentially independent of pH. This conclusion is confirmed by the finding that the Ki profile for the competitive inhibitor, (3-endo,8-exo)-8-hydroxy-2-oxabicyclo[3.3]non-6-ene-3,5-dicarboxylic acid, shows the same three ionizing groups as observed in the V/Kchorismate profile. By contrast, the Ki profile for carboxyethyldihydrobenzoate shows only one residue, with a pK value of 7.3, that must be protonated for binding of the inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The maximum velocity of the malic enzyme (L-malate: NADP+ oxidoreductase (oxaloacetate-decarboxylating), EC 1.1.1.40) reductive carboxylation of pyruvate and V/KCO2 are pH-independent from pH 5.5 to pH 8.5. V/K for pyruvate exhibits pK values values of 6.50 +/- 0.25 and 7.25 +/- 0.25. These data suggest that the binding of pyruvate locks the protonation state of enzyme. In addition, the pK values are within experimental error identical for the pH dependence of V/Kmalate and V/Kpyruvate. Thus, the catalytic groups appear to have reverse protonation states in the two reaction directions. The ratio of (V/Kmalate)/(V/Kpyruvate) is 100, suggesting that the protonation state of enzyme is optimum in the malate oxidative decarboxylation direction. Thus, the group with a pK of about 6 is unprotonated and the group with a pK of 7.5 is protonated for malate decarboxylation, and the opposite is true for pyruvate reductive carboxylation.  相似文献   

6.
L J Hyland  T A Tomaszek  T D Meek 《Biochemistry》1991,30(34):8454-8463
The pH dependence of the peptidolytic reaction of recombinant human immunodeficiency virus type 1 protease has been examined over a pH range of 3-7 for four oligopeptide substrates and two competitive inhibitors. The pK values obtained from the pKis vs pH profiles for the unprotonated and protonated active-site aspartyl groups, Asp-25 and Asp-25', in the monoprotonated enzyme form were 3.1 and 5.2, respectively. Profiles of log V/K vs pH for all four substrates were "bell-shaped" in which the pK values for the unprotonated and protonated aspartyl residues were 3.4-3.7 and 5.5-6.5, respectively. Profiles of log V vs pH for these substrates were "wave-shaped" in which V was shifted to a constant lower value upon protonation of a residue of pK = 4.2-5.2. These results indicate that substrates bind only to a form of HIV-1 protease in which one of the two catalytic aspartyl residues is protonated. Solvent kinetic isotope effects were measured over a pH (D) range of 3-7 for two oligopeptide substrates, Ac-Arg-Ala-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2 and Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2. The pH-independent value for DV/K was 1.0 for both substrates, and DV = 1.5-1.7 and 2.2-3.2 at low and high pH (D), respectively. The attentuation of both V and DV at low pH (D) is consistent with a change in rate-limiting step from a chemical one at high pH (D) to one in which a product release step or an enzyme isomerization step becomes partly rate-limiting at low pH (D). Proton inventory data is in accord with the concerted transfer of two protons in the transition state of a rate-limiting chemical step in which the enzyme-bound amide hydrate adduct collapses to form the carboxylic acid and amine products.  相似文献   

7.
Three different pathways of D,L-diaminopimelate and L-lysine synthesis are known in procaryotes. Determinations of the corresponding enzyme activities in Escherichia coli, Bacillus subtilis, and Bacillus sphaericus verified the fact that in each of these bacteria only one of the possible pathways operates. However, in Corynebacterium glutamicum activities are present which allow in principle the use of the dehydrogenase variant and succinylase variant of lysine synthesis together. Applying gene-directed mutagenesis, various C. glutamicum strains were constructed with interrupted ddh gene. These mutants have an inactive dehydrogenase pathway but are still prototrophic, which is proof that the succinylase pathway of D,L-diaminopimelate synthesis can be utilized. In strains with an increased flow of precursors to D,L-diaminopimelate, however, the inactivation of the dehydrogenase pathway resulted in a reduced formation of lysine, with concomitant accumulation of N-succinyl-diaminopimelate in the cytosol up to a concentration of 25 mM. These data show (i) that both pathways can operate in C. glutamicum for D,L-diaminopimelate and L-lysine synthesis, (ii) that the dehydrogenase pathway is not essential, and (iii) that the dehydrogenase pathway is a prerequisite for handling an increased flow of metabolites to D,L-diaminopimelate.  相似文献   

8.
The variation of kinetic parameters with pH has been determined so as to gain insight into the chemical mechanism of the saccharopine dehydrogenase (NAD+,L-lysine-forming)-catalyzed reaction. In the direction of reductive condensation of lysine and alpha-ketoglutarate (reverse reaction), the V/K profile for lysine shows a group with a pK of 6.3 must be unprotonated and a group with a pK of 8.0 must be protonated for activity. Similar pK's are obtained in the pKi profile for ornithine, which acts as a linear competitive inhibitor with respect to lysine. Temperature and solvent perturbation studies show that these groups are probably histidines. The V/K profile for alpha-ketoglutarate reveals a single group with pK = 8.4 (probably lysine) that must be protonated. It is proposed that one of the histidines is involved in the binding of the epsilon-amino group of the substrate lysine and the positively charged lysine residue hydrogen bonds to the carbonyl oxygen of alpha-ketoglutarate. In the direction of saccharopine cleavage, the V/K profile for saccharopine shows that two groups with pK values of 6.0 and 7.1, possibly a histidine and lysine, must be unprotonated for its reaction with the enzyme X NAD+ complex. The log V-pH plots for the forward and reverse reactions both show sigmoidal curves. At low pH, the activity is lower for the forward reaction, and is higher for the reverse reaction. The ionization of a single group appears to be responsible for the change in activity. A tentative scheme for the chemical reaction is presented.  相似文献   

9.
Spies MA  Toney MD 《Biochemistry》2003,42(17):5099-5107
Alanine racemase catalyzes the pyridoxal phosphate-dependent interconversion of the D- and L-isomers of alanine. Previous studies have shown that the enzyme employs a two-base mechanism in which Lys39 and Tyr265 are the acid/base catalysts. It is thus possible that stereoisomerization of the external aldimine intermediates occurs through a concerted double proton transfer without the existence of a distinct carbanionic intermediate. This possibility was tested by the application of multiple kinetic isotope effect (KIE) methodology to alanine racemase. The mutual dependence of primary substrate and solvent deuterium KIEs has been measured using equilibrium perturbation-type experiments. The conceptually straightforward measurement of the substrate KIE in H(2)O is complemented with a less intuitive protium washout perturbation-type measurement in D(2)O. The primary substrate KIE in the D --> L direction at 25 degrees C is reduced from 1.297 in H(2)O to 1.176 in D(2)O, while in the L --> D direction it is reduced from 1.877 in H(2)O to 1.824 in D(2)O. Similar reductions are also observed at 65 degrees C, the temperature to which the Bacillus stearothermophilus enzyme is adapted. These data strongly support a stepwise racemization of stereoisomeric aldimine intermediates in which a substrate-based carbanion is an obligatory intermediate. The ionizations observed in k(cat)/K(M) pH profiles have been definitively assigned based on the DeltaH(ion) values of the observed pK(a)'s with alanine and on the pH dependence of k(cat)/K(M) for the alternative substrate serine. The acidic pK(a) in the bell-shaped curve is due to the phenolic hydroxyl of Tyr265, which must be unprotonated for reaction with either isomer of alanine. The basic pK(a) is due to the substrate amino group, which must be protonated to react with Tyr265-unprotonated enzyme. A detailed reaction mechanism incorporating these results is proposed.  相似文献   

10.
Johnson CM  Huang B  Roderick SL  Cook PF 《Biochemistry》2004,43(49):15534-15539
The pH dependence of kinetic parameters was determined in both reaction directions to obtain information about the acid-base chemical mechanism of serine acetyltransferase from Haemophilus influenzae (HiSAT). The maximum rates in both reaction directions, as well as the V/K(serine) and V/K(OAS), decrease at low pH, exhibiting a pK of approximately 7 for a single enzyme residue that must be unprotonated for optimum activity. The pH-independent values of V(1)/E(t), V(1)/K(serine)E(t), V/K(AcCoA)E(t), V(2)/E(t), V(2)/K(OAS)E(t), and V/K(CoA)E(t) are 3300 +/- 180 s(-1), (9.6 +/- 0.4) x 10(5) M(-1) s(-1), 3.3 x 10(6) M(-1) s(-1), 420 +/- 50 s(-1), (2.1 +/- 0.5) x 10(4) M(-1) s(-1), and (4.2 +/- 0.7) x 10(5) M(-1) s(-1), respectively. The K(i) values for the competitive inhibitors glycine and l-cysteine are pH-independent. The solvent deuterium kinetic isotope effects on V and V/K in the direction of serine acetylation are 1.9 +/- 0.2 and 2.5 +/- 0.4, respectively, and the proton inventories are linear for both parameters. Data are consistent with a single proton in flight in the rate-limiting transition state. A general base catalytic mechanism is proposed for the serine acetyltransferase. Once acetyl-CoA and l-serine are bound, an enzymic general base accepts a proton from the l-serine side chain hydroxyl as it undergoes a nucleophilic attack on the carbonyl of acetyl-CoA. The same enzyme residue then functions as a general acid, donating a proton to the sulfur atom of CoASH as the tetrahedral intermediate collapses, generating the products OAS and CoASH. The rate-limiting step in the reaction at limiting l-serine levels is likely formation of the tetrahedral intermediate between serine and acetyl-CoA.  相似文献   

11.
Dobson RC  Girón I  Hudson AO 《PloS one》2011,6(5):e20439
In some bacterial species and photosynthetic cohorts, including algae, the enzyme L,L-diaminopimelate aminotransferase (DapL) (E.C. 2.6.1.83) is involved in the anabolism of the essential amino acid L-lysine. DapL catalyzes the conversion of tetrahydrodipicolinate (THDPA) to L,L-diaminopimelate (L,L-DAP), in one step bypassing the DapD, DapC and DapE enzymatic reactions present in the acyl DAP pathways. Here we present an in vivo and in vitro characterization of the DapL ortholog from the alga Chlamydomonas reinhardtii (Cr-DapL). The in vivo analysis illustrated that the enzyme is able to functionally complement the E. coli dap auxotrophs and was essential for plant development in Arabidopsis. In vitro, the enzyme was able to inter-convert THDPA and L,L-DAP, showing strong substrate specificity. Cr-DapL was dimeric in both solution and when crystallized. The structure of Cr-DapL was solved in its apo form, showing an overall architecture of a α/β protein with each monomer in the dimer adopting a pyridoxal phosphate-dependent transferase-like fold in a V-shaped conformation. The active site comprises residues from both monomers in the dimer and shows some rearrangement when compared to the apo-DapL structure from Arabidopsis. Since animals do not possess the enzymatic machinery necessary for the de novo synthesis of the amino acid L-lysine, enzymes involved in this pathway are attractive targets for the development of antibiotics, herbicides and algaecides.  相似文献   

12.
L-Ribulose-5-phosphate (L-Ru5P) 4-epimerase and L-fuculose-1-phosphate (L-Fuc1P) aldolase are evolutionarily related enzymes that display 26% sequence identity and a very high degree of structural similarity. They both employ a divalent cation in the formation and stabilization of an enolate during catalysis, and both are able to deprotonate the C-4 hydroxyl group of a phosphoketose substrate. Despite these many similarities, subtle distinctions must be present which allow the enzymes to catalyze two seemingly different reactions and to accommodate substrates differing greatly in the position of the phosphate (C-5 vs C-1). Asp76 of the epimerase corresponds to the key catalytic acid/base residue Glu73 of the aldolase. The D76N mutant of the epimerase retained considerable activity, indicating it is not a key catalytic residue in this enzyme. In addition, the D76E mutant did not show enhanced levels of background aldolase activity. Mutations of residues in the putative phosphate-binding pocket of the epimerase (N28A and K42M) showed dramatically higher values of K(M) for L-Ru5P. This indicates that both enzymes utilize the same phosphate recognition pocket, and since the phosphates are positioned at opposite ends of the respective substrates, the two enzymes must bind their substrates in a reversed or "flipped" orientation. The epimerase mutant D120N displays a 3000-fold decrease in the value of k(cat), suggesting that Asp120' provides a key catalytic acid/base residue in this enzyme. Analysis of the D120N mutant by X-ray crystallography shows that its structure is indistinguishable from that of the wild-type enzyme and that the decrease in activity was not simply due to a structural perturbation of the active site. Previous work [Lee, L. V., Poyner, R. R., Vu, M. V., and Cleland, W. W. (2000) Biochemistry 39, 4821-4830] has indicated that Tyr229' likely provides the other catalytic acid/base residue. Both of these residues are supplied by an adjacent subunit. Modeling of L-Ru5P into the active site of the epimerase structure suggests that Tyr229' is responsible for deprotonating L-Ru5P and Asp120' is responsible for deprotonating its epimer, D-Xu5P.  相似文献   

13.
Human glutaredoxin (GRx), also known as thioltransferase, is a 12 kDa thiol-disulfide oxidoreductase that is highly selective for reduction of glutathione-containing mixed disulfides. The apparent pK(a) for the active site Cys22 residue is approximately 3.5. Previously we observed that the catalytic enhancement by glutaredoxin could be ascribed fully to the difference between the pK(a) of its Cys22 thiol moiety and the pK(a) of the product thiol, each acting as a leaving group in the enzymatic and nonenzymatic reactions, respectively [Srinivasan et al. (1997), Biochemistry 36, 3199-3206]. Continuum electrostatic calculations suggest that the low pK(a) of Cys22 results primarily from stabilization of the thiolate anion by a specific ion-pairing with the positively charged Lys19 residue, although hydrogen bonding interactions with Thr21 also appear to contribute. Variants of Lys19 were considered to further assess the predicted role of Lys19 on the pK(a) of Cys22. The variants K19Q and K19L were generated by molecular modeling, and the pK(a) value for Cys22 was calculated for each variant. For K19Q, the predicted Cys22 pK(a) is 7.3, while the predicted value is 8.3 for K19L. The effects of the mutations on the interaction energy between the adducted glutathionyl moiety and GRx were roughly estimated from the van der Waals and electrostatic energies between the glutathionyl moiety and proximal protein residues in a mixed disulfide adduct of GRx and glutathione, i.e., the GRx-SSG intermediate. The values for the K19 mutants differed by only a small amount compared to those for the wild type enzyme intermediate. Together, the computational analysis predicted that the mutant enzymes would have markedly reduced catalytic rates while retaining the glutathionyl specificity displayed by the wild type enzyme. Accordingly, we constructed and characterized the K19L and K19Q mutants of two forms of the GRx enzyme. Each of the mutants retained glutathionyl specificity as predicted and displayed diminution in activity, but the decreases in activity were not to the extent predicted by the theoretical calculations. Changes in the respective Cys22-thiol pK(a) values of the mutant enzymes, as shown by pH profiles for iodoacetamide inactivation of the respective enzymes, clearly revealed that the K19-C22 ion pair cannot fully account for the low pK(a) of the Cys22 thiol. Additional contributions to stabilization of the Cys22 thiolate are likely donated by Thr21 and the N-terminal partial positive charge of the neighboring alpha-helix.  相似文献   

14.
Wang PF  McLeish MJ  Kneen MM  Lee G  Kenyon GL 《Biochemistry》2001,40(39):11698-11705
All phosphagen kinases contain a conserved cysteine residue which has been shown by crystallographic studies, on both creatine kinase and arginine kinase, to be located in the active site. There are conflicting reports as to whether this cysteine is essential for catalysis. In this study we have used site-directed mutagenesis to replace Cys282 of human muscle creatine kinase with serine and methionine. In addition, we have replaced Cys282, conserved across all creatine kinases, with alanine. No activity was found with the C282M mutant. The C282S mutant showed significant, albeit greatly reduced, activity in both the forward (creatine phosphorylation) and reverse (MgADP phosphorylation) reactions. The K(m) for creatine was increased approximately 10-fold, but the K(m) for phosphocreatine was relatively unaffected. The V and V/K pH-profiles for the wild-type enzyme were similar to those reported for rabbit muscle creatine kinase, the most widely studied creatine kinase isozyme. However, the V/K(creatine) profile for the C282S mutant was missing a pK of 5.4. This suggests that Cys282 exists as the thiolate anion, and is necessary for the optimal binding of creatine. The low pK of Cys282 was also determined spectrophotometrically and found to be 5.6 +/- 0.1. The S284A mutant was found to have reduced catalytic activity, as well as a 15-fold increase in K(m) for creatine. The pK(a) of Cys282 in this mutant was found to be 6.7 +/- 0.1, indicating that H-bonding to Ser284 is an important, but not the sole, factor contributing to the unusually low pK(a) of Cys282.  相似文献   

15.
Zheng R  Blanchard JS 《Biochemistry》2000,39(13):3708-3717
Ketopantoate reductase (EC 1.1.1.169) catalyzes the NADPH-dependent reduction of alpha-ketopantoate to form D-(-)-pantoate in the pantothenate/coenzyme A biosynthetic pathway. The enzyme encoded by the panE gene from E. coli K12 was overexpressed and purified to homogeneity. The native enzyme exists in solution as a monomer with a molecular mass of 34 000 Da. The steady-state initial velocity and product inhibition patterns are consistent with an ordered sequential kinetic mechanism in which NADPH binding is followed by ketopantoate binding, and pantoate release precedes NADP(+) release. The pH dependence of the kinetic parameters V and V/K for substrates in both the forward and reverse reactions suggests the involvement of a single general acid/base in the catalytic mechanism. An enzyme group exhibiting a pK value of 8.4 +/- 0.2 functions as a general acid in the direction of the ketopantoate reduction, while an enzyme group exhibiting a pK value of 7.8 +/- 0.2 serves as a general base in the direction of pantoate oxidation. The stereospecific transfer of the pro-S hydrogen atom of NADPH to the C-2 position of ketopantoate was demonstrated by (1)H NMR spectroscopy. Primary deuterium kinetic isotope effects of 1.3 and 1.5 on V(for) and V/K(NADPH), respectively, and 2.1 and 1.3 on V(rev) and V/K(HP), respectively, suggest that hydride transfer is not rate-limiting in catalysis. Solvent kinetic isotope effects of 1.3 on both V(for) and V/K(KP), and 1.4 and 1.5 on V(rev) and V/K(HP), respectively, support this conclusion. The apparent equilibrium constant, K(eq)', of 676 at pH 7.5 and the standard free energy change, DeltaG, of -14 kcal/mol suggest that ketopantoate reductase reaction is very favorable in the physiologically important direction of pantoate formation.  相似文献   

16.
Neutron activation analysis of UDP-galactose 4-epimerase from Escherichia coli for 53 metals shows that the enzyme does not contain any of these metals at significant levels. The substrate analog P1-5'-uridine-P2-glucose-6-yl pyrophosphate (UGP), a structural isomer of UDP-glucose with the sugar linked to UDP through the C-6 hydroxyl group, is an inactivator that irreversibly reduces epimerase.NAD+ to epimerase.NADH. The pH dependence of kobs reveals the essential involvement of an acidic group, kinetically measured pKa = 5.48 +/- 0.08, in unprotonated form and two weakly acidic or basic groups, apparent pKa values of 10.03 +/- 0.43, in protonated forms. Measurements of kobs as a function of [UGP] show that it is given by kobs = k[UGP]/(K + [UGP]) at a given pH, where K = 0.19 +/- 0.04 mM throughout the pH range 4.8-10.4. The pH-dependent first order rate constants range from 0.28 to 1.94 s-1, with the maximum value at pH 7.6 and decreasing at acidic and basic pH values. Reaction of [glucose-1-2H]UGP proceeds with kinetic isotope effects of 5.0, 2.1, 2.0, 1.9, and 3.5 at pH values 5.0, 6.2, 7.6, 9.0, and 10.0, respectively. Therefore, hydride transfer becomes rate-limiting at pH extremes but is not limiting at neutral pH, although deuteride transfer is significantly limiting at all pH values. The isotope effects facilitated correction of the kinetic pK values to the thermodynamic values 6.1-6.2 on the acid side and 9.0-9.6 on the alkaline side. We postulate that the group with pK1 = 5.5 (6.1-6.2 corrected) functions as an enzymic general base that abstracts the glucosyl C-1 hydroxyl proton in concert with transfer of the C-1 hydrogen and two electrons to NAD+. The pH dependence on the alkaline side may be related to the uridine nucleotide-dependent conformational transition that is an essential step in the reduction of epimerase.NAD+ to epimerase.NADH by sugars.  相似文献   

17.
M Y Yoon  P F Cook 《Biochemistry》1987,26(13):4118-4125
The pH dependence of kinetic parameters and inhibitor dissociation constants for the adenosine cyclic 3',5'-monophosphate dependent protein kinase reaction has been determined. Data are consistent with a mechanism in which reactants selectively bind to enzyme with the catalytic base unprotonated and an enzyme group required protonated for peptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) binding. Binding of the peptide apparently locks both of the above enzyme residues in their correct protonation state. MgATP preferentially binds fully ionized and requires an enzyme residue (probably lysine) to be protonated. The maximum velocity and V/KMgATP are pH independent. The V/K for Ser-peptide is bell-shaped with pK values of 6.2 and 8.5 estimated. The pH dependence of 1/Ki for Leu-Arg-Arg-Ala-Ala-Leu-Gly is also bell-shaped, giving pK values identical with those obtained for V/KSer-peptide, while the Ki for MgAMP-PCP increases from a constant value of 650 microM above pH 8 to a constant value of 4 mM below pH 5.5. The Ki for uncomplexed Mg2+ obtained from the Mg2+ dependence of V and V/KMgATP is apparently pH independent.  相似文献   

18.
Jiang S  Gilpin ME  Attia M  Ting YL  Berti PJ 《Biochemistry》2011,50(12):2205-2212
MurAs (enolpyruvyl-UDP-GlcNAc synthases) from pathogenic bacteria such as Borrelia burgdorferi (Lyme disease) and tuberculosis are fosfomycin resistant because an Asp-for-Cys substitution prevents them from being alkylated by this epoxide antibiotic. Previous attempts to characterize naturally Asp-containing MurAs have resulted in no protein or no activity. We have expressed and characterized His-tagged Lyme disease MurA (Bb_MurA(H6)). The protein was most soluble at high salt concentrations but maximally active around physiological ionic strength. The steady-state kinetic parameters at pH 7 were k(cat) = 1.07 ± 0.03 s(-1), K(M,PEP) = 89 ± 12 μM, and K(M,UDP-GlcNAc) = 45 ± 7 μM. Mutating the active site Asp to Cys, D116C, caused a 21-fold decrease in k(cat) and rendered the enzyme fosfomycin sensitive. The pH profile of k(cat) was bell-shaped and centered around pH 5.3 for Bb_MurA(H6), with pK(a1) = 3.8 ± 0.2 and pK(a2) = 7.4 ± 0.2. There was little change in pK(a1) with the D116C mutant, 3.5 ± 0.3, but pK(a2) shifted to >11. This demonstrated that the pK(a2) of 7.4 was due to D116, almost 3 pH units above an unperturbed carboxylate, and that it must be protonated for activity. This supports D116's proposed role as a general acid/base catalyst. As fosfomycin does not react with simple thiols, nor most protein thiols, the reactivity of D116C with fosfomycin, combined with the strongly perturbed pK(a2) for D116, strongly implies an unusual active site environment and a chemical role in catalysis for Asp/Cys. There is also good evidence for C115 having a role in product release. Both roles may be operative for both Asp- and Cys-containing MurAs.  相似文献   

19.
The effect of ligands, including substrates and allosteric effectors, on the pH-dependent inactivation and reactivation of rabbit muscle phosphofructokinase has been examined in terms of the mechanism proposed previously (Bock, P.E. and Fireden, C. (1976) J. Biol. Chem. 251, 5630-5636). It is concluded thatt many ligands exert their effect by binding preferentially to either protonated or unprotonated forms of the enzyme and thus shifting an apparent pK for the inactivation or reactivation process. ATP and fructose 6-phosphate influence the apparent pK to different extents and in different directions, with ATP binding preferentially to the protonated forms and fructose 6-phosphate to the unprotonated forms. Enzyme inactivated by ATP can be reactivated by the addition of fructose 6-phosphate. The experiments indicate that inactivation and reactivation in the presence of these ligands can occur by kinetically different pathways as has been found for these processes in the absence of ligands. The results are discussed in relation to what might be expected for ligand binding properties of the enzyme as a function of pH, temperature, and enzyme concentration. The effect of ATP and MgATP is complex, perhaps representing more than one site of binding. Citrate appears to bind preferentially to protonated forms of the enzyme while fructose 1,6-bisphosphate and AMP bind preferentially to the unprotonated forms. ADP, K+, and NH4+ appear to have little or no preference in binding to different enzyme forms.  相似文献   

20.
S H Park  B G Harris  P F Cook 《Biochemistry》1989,28(15):6334-6340
Substrate activation of the rate of the NAD-malic enzyme reaction by malate is obtained in the presence but not in the absence of oxalate. The substrate activation is a result of competition between malate and oxalate for the E.NADH complex, with malate binding to the form of the complex unprotonated at an enzyme group with a pK of 4.9 and oxalate binding preferentially to the protonated form. The off-rate for NADH from the E.NADH complex is completely rate limiting when the group with a pK of 4.9 is protonated but is only one of several rate-limiting steps when it is unprotonated [Kiick, D.M., Harris, B.G., & Cook, P.F. (1986) Biochemistry 25, 227]. The competition by malate with oxalate thus results in an overall increase in the off-rate for NADH as a result of binding to the unprotonated form of E.NADH. Consistent with the proposed mechanism, the deuterium isotope effect on V for the nonsubstrate-activating malate concentration range decreases from 1.6 in the absence of oxalate to 1.3 in the presence of a concentration of oxalate equal to its Kii. The rate equation for the oxalate-induced substrate activation by malate is derived and presented in the Appendix. Data are discussed in terms of the overall mechanism of the NAD-malic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号