首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abundant evidence indicted that P2X7 receptor show a essential role in human health and some human diseases including hypertension, atherosclerosis, pulmonary inflammation, tuberculosis infection, psychiatric disorders, and cancer. P2X7 receptor also has an important role in some central nervous system diseases such as neurodegenerative disorders. Recently, more research suggested that P2X7 receptor also plays a crucial role in bone and joint diseases. But the effect of P2X7 receptor on skeletal and joint diseases has not been systematically reviewed. In this article, the role of P2X7 receptor in skeletal and joint diseases is elaborated. The activation of P2X7 receptor can ameliorate osteoporosis by inducing a fine balance between osteoclastic resorption and osteoblastic bone formation. The activation of P2X7 receptor can relieve the stress fracture injury by increasing the response to mechanical loading and inducing osteogenesis. But the activation of P2X7 receptor mediates the cell growth and cell proliferation in bone cancer. In addition, the activation of P2X7 receptor can aggravate the process of some joint diseases such as osteoarthritis, rheumatoid arthritis, and acute gouty arthritis. The inhibition of P2X7 receptor can alleviate the pathological process of joint disease to some extent. In conclusion, P2X7 receptor may be a critical regulator and therapeutic target for bone and joint diseases.  相似文献   

2.
人内源性逆转录病毒(human endogenous retroviruses,HERV)是几百万年前整合至人类基因组并遗传至今的外源性逆转录病毒的残余物。因突变、缺失等导致大多数HERV没有完整的开放读码框,但仍有部分家族成员可编码完整的病毒蛋白,如分离自多发性硬化症患者的γ逆转录病毒相似元件家族成员HERV-W的包膜蛋白基因(HERV-W env,又称ERVWE1)编码的ENV蛋白(又称Syncytin-1),在人胎盘发育过程中起细胞融合以及免疫调节作用。在生理条件下,HERV-W受到表观遗传调控而其转录活性被抑制;但亦可被环境、遗传等因素激活,如自身免疫性疾病、精神疾病及癌症等。研究发现HERV-W可能在疾病的发生、发展中起重要的“桥梁”与“触发”作用,靶向Syncytin-1的单克隆抗体GNbAC1已用于多发性硬化症的临床研究,并且在1型糖尿病中也有良好的应用前景。对HERV-W的深入研究可为某些疾病的诊断和治疗提供重要的途径。  相似文献   

3.
植物细胞的生物力学, 是探索生物生长奥妙的基础。本文阐述了国内外关于植物细胞生物力学的研究现状与进展; 讨论了植物细胞力学分析的几个基本理论; 重点讨论了植物细胞的力学模型及组织模型, 其中包括植物细胞的流变特性、黏附特性、应激效应(植物对外界应力刺激的响应)以及植物器官之茎杆的研究; 提出了植物细胞生物力学应在以下几个方面做进一步深入研究: 细胞间接触和细胞间相互渗透, 应力刺激对植物根、茎和叶等方面的影响以及外力在细胞中传递与分布规律。  相似文献   

4.
Zhang W  Dolan ME 《Bioinformation》2008,2(6):238-239
The International HapMap Project provides a key resource of genotypic data on human lymphoblastoid cell lines derived from four major world populations of European, African, Chinese and Japanese ancestry for researchers to associate with various phenotypic data to find genes affecting health, disease and response to drugs. Recently, the HapMap resource has significantly benefited research areas such as gene expression variation studies. Besides some intrinsic limitations, there are a few challenges that should be considered in the next wave of research using this tremendous resource. We suggest that overcoming these challenges or considering the confounding variables in the interpretation of results can provide more insights into the current views of the human genome as well as complex traits such as drug response variation and susceptibility to common diseases.  相似文献   

5.
植物细胞的生物力学,是探索生物生长奥妙的基础.本文阐述了国内外关于植物细胞生物力学的研究现状与进展;讨论了植物细胞力学分析的几个基本理论;重点讨论了植物细胞的力学模型及组织模型,其中包括植物细胞的流变特性、黏附特性、应激效应(植物对外界应力刺激的响应)以及植物器官之茎杆的研究;提出了植物细胞生物力学应在以下几个方面做进一步深入研究:细胞间接触和细胞间相互渗透,应力刺激对植物根、茎和叶等方面的影响以及外力在细胞中传递与分布规律.  相似文献   

6.
Cirrhosis is a life-threatening condition that is generally attributed to overproduction of collagen fibers in the extracellular matrix that mechanically stiffens the liver. Chronic liver injury due to causes including viral hepatitis, inherited and metabolic liver diseases and external factors such as alcohol abuse can result in the development of cirrhosis. Progression of cirrhosis leads to hepatocellular dysfunction. While extensive studies to understand the complexity underlying liver fibrosis have led to potential application of anti-fibrotic drugs, no such FDA-approved drugs are currently available. Additional studies of hepatic fibrogenesis and cirrhosis primarily have focused on the extracellular matrix, while hepatocyte biomechanics has received limited attention. The role of hepatocyte biomechanics in liver cirrhosis remains elusive, and how the cell stiffness is correlated with biological functions of hepatocytes is also unknown. In this study, we demonstrate that the biomechanical properties of hepatocytes are correlated with their functions (e.g., glucose metabolism), and that hepatic dysfunction can be restored through modulation of the cellular biomechanics. Furthermore, our results indicate the hepatocyte functionality appears to be regulated through a crosstalk between the Rho and Akt signaling. These novel findings may lead to biomechanical intervention of hepatocytes and the development of innovative tissue engineering for clinical treatment to target liver cells rather than exclusively focusing on the extracellular matrix alone in liver cirrhosis.  相似文献   

7.
T lymphocytes play a central role in the pathogenesis of a large number of human conditions including autoimmunity and graft rejection. Although T cells are key players in mounting immune responses, the assessment of T cell repertoires has yet to find an important role in clinical decision making. In this review, we discuss the "immunoscope" technique and its potential diagnostic role in a variety of clinical scenarios. This is an RT-PCR based approach that subdivides a bulk T cell population (i. e. from blood, lymph, spleen, or tissue) into approximately 2800 groups based upon rearranged variable beta (Vbeta)/joining beta (Jbeta) gene segments and the resulting length of the T cell receptor's (TCR's) third complementarity determining region (CDR-3). This extensive subdivision, or focusing, allows clonal expansions to be directly observed. Such a fine-tuned analysis has revealed previously unappreciated aspects of the T cell repertoire. For instance, an antigen-specific immune response can be divided into both public and non-public components. The non-public repertoire contains the majority of the expanding T cells which are unique to the individual (private), or shared by only some (semi-private), while "public" T cells can be found responding to the antigenic determinant in every individual. Although they are often a minority of the response, the public T cell repertoire seems to play a more important role in defining, as well as driving, the overall immune phenotype in the animal. Immunoscope analysis has identified public and non-public responses in human pathologies, such as multiple sclerosis. The ability to characterize the driver T cells dictating the state of immunity/autoimmunity in individual patients will be an important step towards understanding autoimmunity and designing effective treatment for a variety of conditions including rheumatoid arthritis and multiple sclerosis. We review the current literature involving public and non-public repertoires and discuss the prospect that immunoscope analysis may play a central role in the study and perhaps the management of human autoimmune diseases, and cancer.  相似文献   

8.
衰老是阿尔茨海默病(Alzheimer’s disease,AD)等神经退行性疾病的主要危险因素。氧化应激和自由基具有重要的生物学功能,氧化还原失衡导致氧化应激,与包括AD在内的许多人类疾病的病理生理有关。本文综述了活性氧(ROS)参与神经退行性疾病发病的相关机制,特别是氧化应激与AD其他关键机制的相互作用,并总结了茶多酚、L-茶氨酸、虾青素、EGb761、大豆异黄酮和烟碱在细胞和动物模型中对AD的防护作用以及在临床上对相关疾病的缓解作用。希望该综述能为AD的预防和治疗策略提供一些见解。  相似文献   

9.
丁伟  尚蕾  熊鲲 《现代生物医学进展》2015,15(12):2345-2348
神经元的死亡是许多神经系统疾病如阿尔茨海默病、帕金森病、急性青光眼等发生发展过程中的重要事件,传统认为,细胞死亡有凋亡、自噬、坏死三种方式,凋亡和自噬为程序性的细胞死亡,坏死为非程序性的死亡途径。而近年来的研究发现了一种名为程序性坏死(necroptosis)的可调控的坏死,因此,对这些可调控的细胞死亡的研究对治疗这类神经系统疾病有重要的意义。大量研究发现,在能量代谢和自由基代谢中占据着重要地位的线粒体在细胞死亡过程中也发挥重要作用。本文对线粒体在神经元凋亡、自噬和程序性坏死中的生物学作用的最新进展做一综述。  相似文献   

10.
Yao W  Chen K  Wang X  Xie L  Wen Z  Yan Z  Chien S 《Journal of biomechanics》2002,35(12):307-1663
We cloned the cDNA fragment of human TNF-related apoptosis inducing ligand (TRAIL) into RevTet-On, a Tet-regulated and high-level gene expression system. Making use of the TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the biomechanics properties of Jurkat through measuring changes of cellular biomechanics properties before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the TRAIL gene expression led to significant changes in cellular biomechanics properties. The osmotic fragility increased and the cell stiffness increased after the expression of TRAIL gene. Thus, the apoptosis-inducing TRAIL gene caused significant changes in the biomechanics properties of Jurkat cells.  相似文献   

11.
人类人工染色体作为转基因载体的应用前景   总被引:1,自引:0,他引:1  
左国伟  吕凤林 《遗传》2005,27(6):995-1000
自1997年首次成功构建人类人工染色体(human artificial chromosome,HAC)以来,对其理论、方法学问题的研究一直就是人们关注的焦点,并引起了科学家们的极大兴趣,目前已能采用不同的方法获得多种类型的HAC。与酵母人工染色体(YAC)、细菌人工染色体(BAC)等相比,HAC不整合到细胞的基因组中,以一个独立的功能性染色体单位而存在,并在细胞中进行正常的有丝分裂和减数分裂。迄今的研究表明:HAC可以携带大片段基因组DNA,是研究人类基因表达和调控、染色体功能基本单元的重要工具,也是建立HAC动物模型的重要手段。在未来的基因治疗方面有着广阔的应用前景。  相似文献   

12.
A spinal cord injury may lead to loss of motor and sensory function and even death. The biomechanics of the injury process have been found to be important to the neurological damage pattern, and some studies have found a protective effect of the cerebrospinal fluid (CSF). However, the effect of the CSF thickness on the cord deformation and, hence, the resulting injury has not been previously investigated. In this study, the effects of natural variability (in bovine) as well as the difference between bovine and human spinal canal dimensions on spinal cord deformation were studied using a previously validated computational model. Owing to the pronounced effect that the CSF thickness was found to have on the biomechanics of the cord deformation, it can be concluded that results from animal models may be affected by the disparities in the CSF layer thickness as well as by any difference in the biological responses they may have compared with those of humans.  相似文献   

13.
人类基因组DNA核苷酸序列中约93%能被转录为RNA,其中仅2%的转录产物被翻译为蛋白质,余下98%属于非编码RNA(non-coding RNA,ncRNA)。ncRNA中长度超过200 nt的称为长链非编码RNA(long non-coding RNA,LncRNA),长期以来LncRNA被认为是转录过程中的副产物而不具有生物学功能。近年随着微小RNA(microRNA,miRNA)的研究进展,揭示了ncRNA在人类基因转录后调节、细胞生长、分化、增殖中起着相当重要的作用。同时也提示,相比miRNA,在细胞内转录比例更高的LncRNA具有极其复杂而重要的生物学功能,并与人类疾病密切相关。结合LncRNA的表观遗传学功能及其病理生理意义作一简述。  相似文献   

14.
RNAi的作用机制及其临床应用研究   总被引:1,自引:0,他引:1  
RNAi是指在特定因子的作用下,由导入细胞内的双链RNA(dsRNA)降解成的约22nt左右的siRNA。是近年来发现的可被人工诱导的一种生物体自身所具有的基因沉默现象。因为其相对于其他类似手段有更为突出的高效性、高特异性等优点,而越来越受到人们的重视。已经迅速发展成为研究基因功能的重要工具,并将在对病毒病、肿瘤病、遗传病等的治疗方面发挥着重要作用,因此被《Science》评选为2002年度最重要的科技突破。然而作为一种新的技术它仍有一些不足亟待完善,而在临床应用方面需要进一步深入的研究和验证。  相似文献   

15.
The purpose of this editorial is to highlight recent developments in molecular biology tools and techniques in stem cell research and their applications to human diseases. Recent advancements in stem cell research and regenerative medicine are offering immense hope to cure human diseases and injuries, such as cancer, diabetes, Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. In the last three decades, especially in the last decade, major breakthroughs have been seen in the conversion of adult stem cells into induced pluripotent stem cells, which in turn has led the way to developing stem cell therapies for human diseases. This article summarizes contributions of research into stem cell therapies.  相似文献   

16.
Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.  相似文献   

17.
It has been a major challenge to develop effective therapeutics for stroke, a leading cause of death and serious debilitation. Intensive research in the past 15 years have implicated many regulators and the related mechanisms by which neuronal cell death is regulated. It is now clear that even a brief ischemic stroke may trigger complex cellular events that lead to both apoptotic and necrotic neuronal cell death in a progressive manner. Although efforts at developing specific chemical inhibitors for validated targets have been successful for in vitro enzymatic assays, the development of some of such inhibitors into human therapy has been often hindered by their in vivo bioavailability profile. Considerations for the ability to chemically target a cellular mechanism in manner compatible with disease targets in vivo might be emphasized early in the development process by putting a priority on identifying key targets that can be effectively targeted chemically. Thorough interrogation of cellular pathways by saturation chemical genetics may provide a novel strategy to identify multiple key molecular entities that can be targeted chemically in order to select a target suitable for the treatment of intended human diseases such as stroke.  相似文献   

18.
From the signaling point of view, endocytosis has long been regarded as a major mechanism of attenuation, through the degradation of signaling receptors and, in some cases, of their ligands. This outlook has changed, over the past decade, as it has become clear that signaling persists in the endocytic route, and that intracellular endocytic stations (the 'signaling endosomes') actually contribute to the sorting of signals in space and time. Endocytosis-mediated recycling of receptors and of signaling molecules to specific regions of the plasma membrane is also coming into focus as a major mechanism in the execution of spatially restricted functions, such as cell motility. In addition, emerging evidence connects endocytosis as a whole, or individual endocytic proteins, to complex cellular programs, such as the control of the cell cycle, mitosis, apoptosis and cell fate determination. Thus, endocytosis seems to be deeply ingrained into the cell regulation blueprint and its subversion is predicted to play an important role in human diseases: first and foremost, cancer.  相似文献   

19.
Challenges of primate embryonic stem cell research   总被引:2,自引:0,他引:2  
Embryonic stem (ES) cells hold great promise for treating degenerative diseases, including diabetes, Parkinson's, Alzheimer's, neural degeneration, and cardiomyopathies. This research is controversial to some because producing ES cells requires destroying embryos, which generally means human embryos. However, some of the surplus human embryos available from in vitro fertilization (IVF) clinics may have a high rate of genetic errors and therefore would be unsuitable for ES cell research. Although gross chromosome errors can readily be detected in ES cells, other anomalies such as mitochondrial DNA defects may have gone unrecognized. An insurmountable problem is that there are no human ES cells derived from in vivo-produced embryos to provide normal comparative data. In contrast, some monkey ES cell lines have been produced using in vivo-generated, normal embryos obtained from fertile animals; these can represent a "gold standard" for primate ES cells. In this review, we argue a need for strong research programs using rhesus monkey ES cells, conducted in parallel with studies on human ES and adult stem cells, to derive the maximum information about the biology of normal stem cells and to produce technical protocols for their directed differentiation into safe and functional replacement cells, tissues, and organs. In contrast, ES cell research using only human cell lines is likely to be incomplete, which could hinder research progress, and delay or diminish the effective application of ES cell technology to the treatment of human diseases.  相似文献   

20.
Desmosomes play a critical role in the maintenance of normal tissue architecture. Skin blistering can occur when desmosomal adhesion is compromised by antibodies in autoimmune diseases such as pemphigus. Inherited mutations in genes encoding desmosomal constituents can adversely affect the skin, and result in heart abnormalities. Desmosomes may have a tumour suppressor function: expression of desmosomal components is reduced in some human cancers, and desmosomal cadherins have the capacity to suppress the invasiveness of cells in culture. Transgenic animal research has provided important insights into the role of these junctions in normal epithelial morphogenesis and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号