首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, excises uracil from DNA. Crystal structures of several UDGs have identified residues important for their exquisite specificity in detection and removal of uracil. Of these, Y66 and N123 in Escherichia coli UDG have been proposed to restrict the entry of non-uracil residues into the active site pocket. In this study, we show that the uracil excision activity of the Y66F mutant was similar to that of the wild-type protein, whereas the activities of the other mutants (Y66C, Y66S, N123D, N123E and N123Q) were compromised approximately 1000-fold. The latter class of mutants showed an increased dependence on the substrate chain length and suggested the existence of long-range interactions of the substrate with UDG. Investigation of the phosphate interactions by the ethylation interference assay reaffirmed the key importance of the -1, +1 and +2 phosphates (with respect to the scissile uracil) to the enzyme activity. Interestingly, this assay also revealed an additional interference at the -5 position phosphate, whose presence in the substrate had a positive effect on substrate utilisation by the mutants that do not possess a full complement of interactions in the active site pocket. Such long-range interactions may be crucial even for the wild-type enzyme under in vivo conditions. Further, our results suggest that the role of Y66 and N123 in UDG is not restricted merely to preventing the entry of non-uracil residues. We discuss their additional roles in conferring stability to the transition state enzyme-substrate complex and/or enhancing the leaving group quality of the uracilate anion during catalysis.  相似文献   

2.
Uracil DNA glycosylase (UDG), a highly conserved DNA repair enzyme, initiates the uracil excision repair pathway. Ugi, a bacteriophage-encoded peptide, potently inhibits UDGs by serving as a remarkable substrate mimic. Structure determination of UDGs has identified regions important for the exquisite specificity in the detection and removal of uracils from DNA and in their interaction with Ugi. In this study, we carried out mutational analysis of the Escherichia coli UDG at Leu191 within the 187HPSPLS192 motif (DNA intercalation loop). We show that with the decrease in side chain length at position 191, the stability of the UDG-Ugi complexes regresses. Further, while the L191V and L191F mutants were as efficient as the wild type protein, the L191A and L191G mutants retained only 10 and 1% of the enzymatic activity, respectively. Importantly, however, substitution of Leu191 with smaller side chains had no effect on the relative efficiencies of uracil excision from the single-stranded and a corresponding double-stranded substrate. Our results suggest that leucine within the HPSPLS motif is crucial for the uracil excision activity of UDG, and it contributes to the formation of a physiologically irreversible complex with Ugi. We also envisage a role for Leu191 in stabilizing the productive enzyme-substrate complex.  相似文献   

3.
Uracil, a promutagenic base, arises in DNA by spontaneous deamination of cytosine or by the malfunctioning of DNA polymerases. To maintain the genomic integrity, cells possess a highly conserved base excision repair enzyme, uracil-DNA glycosylase (UDG). UDGs have a notably high turnover number and strict specificity for uracil in DNA. UDGs are inhibited by a small proteinaceous inhibitor, Ugi, which acts as a transition state substrate mimic. Crystal structure studies have identified the residues crucial in catalysis, and in their interaction with Ugi. Here, we report on the mutational analyses of D64 (D64H and D64N) and H187 (H187C, H187L and H187R) in the active site pocket of Escherichia coli UDG. The mutants were compromised in uracil excision by approximately 200-25,000 fold when compared to the native protein. In contrast, our analysis of the in vivo formed UDG-Ugi complexes on urea gels shows that D64 and H187 contribute minimally to the interaction of the two proteins. Thus, our findings provide further evidence to the primary function of D64 and H187 in catalysis.  相似文献   

4.
Uracil-DNA glycosylase (UDG), which is a critical enzyme in DNA base-excision repair that recognizes and removes uracil from DNA, is specifically and irreversably inhibited by the thermostable uracil-DNA glycosylase inhibitor protein (Ugi). A paradox for the highly specific Ugi inhibition of UDG is how Ugi can successfully mimic DNA backbone interactions for UDG without resulting in significant cross-reactivity with numerous other enzymes that possess DNA backbone binding affinity. High-resolution X-ray crystal structures of Ugi both free and in complex with wild-type and the functionally defective His187Asp mutant Escherichia coli UDGs reveal the detailed molecular basis for duplex DNA backbone mimicry by Ugi. The overall shape and charge distribution of Ugi most closely resembles a midpoint in a trajectory between B-form DNA and the kinked DNA observed in UDG:DNA product complexes. Thus, Ugi targets the mechanism of uracil flipping by UDG and appears to be a transition-state mimic for UDG-flipping of uracil nucleotides from DNA. Essentially all the exquisite shape, electrostatic and hydrophobic complementarity for the high-affinity UDG-Ugi interaction is pre-existing, except for a key flip of the Ugi Gln19 carbonyl group and Glu20 side-chain, which is triggered by the formation of the complex. Conformational changes between unbound Ugi and Ugi complexed with UDG involve the beta-zipper structural motif, which we have named for the reversible pairing observed between intramolecular beta-strands. A similar beta-zipper is observed in the conversion between the open and closed forms of UDG. The combination of extremely high levels of pre-existing structural complementarity to DNA binding features specific to UDG with key local conformational changes in Ugi resolves the UDG-Ugi paradox and suggests a potentially general structural solution to the formation of very high affinity DNA enzyme-inhibitor complexes that avoid cross- reactivity.  相似文献   

5.
Single-strand-selective monofunctional uracil DNA glycosylase (SMUG1) belongs to Family 3 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that a bacterial SMUG1 ortholog in Geobacter metallireducens (Gme) and the human SMUG1 enzyme are not only UDGs but also xanthine DNA glycosylases (XDGs). In addition, mutational analysis and molecular dynamics (MD) simulations of Gme SMUG1 identify important structural determinants in conserved motifs 1 and 2 for XDG and UDG activities. Mutations at M57 (M57L) and H210 (H210G, H210M, and H210N), both of which are involved in interactions with the C2 carbonyl oxygen in uracil or xanthine, cause substantial reductions in XDG and UDG activities. Increased selectivity is achieved in the A214R mutant of Gme SMUG1, which corresponds to a position involved in base flipping. This mutation results in an activity profile resembling a human SMUG1-like enzyme as exemplified by the retention of UDG activity on mismatched base pairs and weak XDG activity. MD simulations indicate that M57L increases the flexibility of the motif 2 loop region and specifically A214, which may account for the reduced catalytic activity. G60Y completely abolishes XDG and UDG activity, which is consistent with a modeled structure in which G60Y blocks the entry of either xanthine or uracil to the base binding pocket. Most interestingly, a proline substitution at the G63 position switches the Gme SMUG1 enzyme to an exclusive UDG as demonstrated by the uniform excision of uracil in both double-stranded and single-stranded DNA and the complete loss of XDG activity. MD simulations indicate that a combination of a reduced free volume and altered flexibility in the active-site loops may underlie the dramatic effects of the G63P mutation on the activity profile of SMUG1. This study offers insights on the important role that modulation of conformational flexibility may play in defining specificity and catalytic efficiency.  相似文献   

6.
Uracil DNA glycosylase inhibitor (Ugi), a protein of 9.4 kDa consists of a five-stranded antiparallel beta sheet flanked on either side by single alpha helices, forms an exclusive complex with uracil DNA glycosylases (UDGs) that is stable in 8M urea. We report on the mutational analysis of various structural elements in Ugi, two of which (hydrophobic pocket and the beta1 edge) establish key interactions with Escherichia coli UDG. The point mutations in helix alpha1 (amino acid residues 3-14) do not affect the stability of the UDG-Ugi complexes in urea. And, while the complex of the deltaN13 mutant with UDG is stable in only approximately 4M urea, its overall structure and thermostability are maintained. The identity of P37, stacked between P26 and W68, was not important for the maintenance of the hydrophobic pocket or for the stability of the complex. However, the M24K mutation at the rim of the hydrophobic pocket lowered the stability of the complex in 6M urea. On the other hand, non-conservative mutations E49G, D61G (cancels the only ionic interaction with UDG) and N76K, in three of the loops connecting the beta strands, conferred no such phenotype. The L23R and S21P mutations (beta1 edge) at the UDG-Ugi interface, and the N35D mutation far from the interface resulted in poor stability of the complex. However, the stability of the complexes was restored in the L23A, S21T and N35A mutations. These analyses and the studies on the exchange of Ugi mutants in preformed complexes with the substrate or the native Ugi have provided insights into the two-step mechanism of UDG-Ugi complex formation. Finally, we discuss the application of the Ugi isolates in overproduction of UDG mutants, toxic to cells.  相似文献   

7.
E. coli nucleoside diphosphate kinase (EcoNDK) is an important cellular enzyme required to maintain balanced nucleotide pools in the cells. Recently, it was reported that EcoNDK is also a multifunctional base excision repair enzyme, possessing uracil-DNA glycosylase (UDG) and AP-DNA processing activities. We investigated for the presence of such activities in M. tuberculosis NDK (MtuNDK), which shares 45.2% identity, and 52.6% similarity with EcoNDK. In contrast to the robust uracil excision activity reported for EcoNDK, MtuNDK preparation exhibited very poor excision of uracil from DNA. However, this activity was undetectable when MtuNDK was purified from an ung(-) strain of E. coli, or when the assays were performed in the presence of extremely low amounts of a highly specific proteinaceous inhibitor, Ugi which forms an extremely tight complex with the host Ung (UDG), showing that MtuNDK preparation was contaminated with UDG. Reinvestigation of uracil processing activity of EcoNDK, showed that even this protein lacked UDG activity. All preparations of NDK were shown to be active by their autophosphorylation activity. Ugi neither displayed a physical interaction with EcoNDK nor did it affect autophosphorylation of NDKs. Further, neither of the NDK preparations processed the AP-DNA generated by UDG treatment of the uracil containing DNA duplexes. However, partially purified preparations of NDK did process such DNA substrates.  相似文献   

8.
Uracil in DNA arises by misincorporation of dUMP during replication and by hydrolytic deamination of cytosine. This common lesion is actively removed through a base excision repair (BER) pathway initiated by a uracil DNA glycosylase (UDG) activity that excises the damage as a free base. UDGs are classified into different families differentially distributed across eubacteria, archaea, yeast, and animals, but remain to be unambiguously identified in plants. We report here the molecular characterization of AtUNG (Arabidopsis thaliana uracil DNA glycosylase), a plant member of the Family-1 of UDGs typified by Escherichia coli Ung. AtUNG exhibits the narrow substrate specificity and single-stranded DNA preference that are characteristic of Ung homologues. Cell extracts from atung−/− mutants are devoid of UDG activity, and lack the capacity to initiate BER on uracil residues. AtUNG-deficient plants do not display any apparent phenotype, but show increased resistance to 5-fluorouracil (5-FU), a cytostatic drug that favors dUMP misincorporation into DNA. The resistance of atung−/− mutants to 5-FU is accompanied by the accumulation of uracil residues in DNA. These results suggest that AtUNG excises uracil in vivo but generates toxic AP sites when processing abundant U:A pairs in dTTP-depleted cells. Altogether, our findings point to AtUNG as the major UDG activity in Arabidopsis.  相似文献   

9.
Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in bacteria and eukaryotes, which removes uracil residues from DNA strands. Methanococcus jannaschii UDG (MjUDG), a novel monofunctional glycosylase, contains a helix-hairpin-helix (HhH) motif and a Gly/Pro rich loop (GPD region), which is important for catalytic activity; it shares these features with other glycosylases, such as endonuclease III. First, to examine the role of two conserved amino acid residues (Asp150 and Tyr152) in the HhH-GPD region of MjUDG, mutant MjUDG proteins were constructed, in which Asp150 was replaced with either Glu or Trp (D150E and D150W), and Tyr152 was replaced with either Glu or Asn (Y152E and Y152N). Mutant D150W completely lacked DNA glycosylase activity, whereas D150E displayed reduced activity of about 70% of the wild type value. However, the mutants Y152E and Y152N retained unchanged levels of UDG activity. We also replaced Glu132 in the HhH motif with a lysine residue equivalent to Lys120 in endonuclease III. This mutation converted the enzyme into a bifunctional glycosylase/AP lyase capable of both removing uracil at a glycosylic bond and cleaving the phosphodiester backbone at an AP site. Mutant E132K catalyzes a β-elimination reaction at the AP site via uracil excision and forms a Schiff base intermediate in the form of a protein-DNA complex. This text was submitted by the authors in English.  相似文献   

10.
《Gene》1997,189(2):175-181
Uracil-DNA glycosylase (UDG) is the enzyme responsible for the first step in the base-excision repair pathway that specifically removes uracil from DNA. Here we report the isolation of the cDNA and genomic clones for the mouse uracil-DNA glycosylase gene (ung) homologous to the major placental uracil-DNA glycosylase gene (UNG) of humans. The complete characterization of the genomic organization of the mouse uracil-DNA glycosylase gene shows that the entire mRNA coding region for the 1.83-kb cDNA of the mouse ung gene is contained in an 8.2-kb SstI genomic fragment which includes six exons and five introns. The cDNA encodes a predicted uracil-DNA glycosylase (UDG) protein of 295 amino acids (33 kDa) that is highly similar to a group of UDGs that have been isolated from a wide variety of organisms. The mouse ung gene has been mapped to mouse chromosome 5 using fluorescence in situ hybridization (FISH).  相似文献   

11.
Uracil-DNA glycosylase (UDG) is a key repair enzyme responsible for removing uracil residues from DNA. Interestingly, UDG is the only enzyme known to be inhibited by two different DNA mimic proteins: p56 encoded by the Bacillus subtilis phage ϕ29 and the well-characterized protein Ugi encoded by the B. subtilis phage PBS1/PBS2. Atomic-resolution crystal structures of the B. subtilis UDG both free and in complex with p56, combined with site-directed mutagenesis analysis, allowed us to identify the key amino acid residues required for enzyme activity, DNA binding and complex formation. An important requirement for complex formation is the recognition carried out by p56 of the protruding Phe191 residue from B. subtilis UDG, whose side-chain is inserted into the DNA minor groove to replace the flipped-out uracil. A comparative analysis of both p56 and Ugi inhibitors enabled us to identify their common and distinctive features. Thereby, our results provide an insight into how two DNA mimic proteins with different structural and biochemical properties are able to specifically block the DNA-binding domain of the same enzyme.  相似文献   

12.
高温会加快碱基脱氨基反应形成损伤碱基的速率,进一步对脱氨基的碱基进行复制会导致突变。因此,极端嗜热古菌基因组的稳定性面临着其生存高温环境的挑战。胞嘧啶脱氨基形成尿嘧啶,是常见的脱碱基类型,复制DNA中尿嘧啶会造成GC→AT的突变。尿嘧啶DNA糖苷酶(Uracil DNA glycosylase,UDG)是修复DNA中尿嘧啶的关键酶。基于识别底物的特异性,UDG分为6个家族,广泛分布在细菌、古菌、真核生物以及一些病毒中。基因组序列显示,极端嗜热古菌至少编码一种UDG。目前,对于细菌和真核生物的UDG已进行了大量的研究,但是关于极端嗜热古菌UDG的研究相对较少,尚处于初期阶段。本文综述了极端嗜热古菌UDG的研究进展,并对今后的研究提出了展望。  相似文献   

13.
Uracil-DNA glycosylase (UDG), a key highly conserved DNA repair enzyme involved in uracil excision repair, was discovered in Escherichia coli . The Bacillus subtilis bacteriophage, PBS-1 and PBS-2, which contain dUMP residues in their DNA, express a UDG inhibitor protein, Ugi which binds to UDG very tightly to form a physiologically irreversible complex. The X-ray analysis of the E. coli UDG ( Ec UDG)-Ugi complex at 3.2 A resolution, leads to the first structure elucidation of a bacterial UDG molecule. This structure is similar to the enzymes from human and viral sources. A comparison of the available structures involving UDG permits the delineation of the constant and the variable regions of the molecule. Structural comparison and mutational analysis also indicate that the mode of action of the enzyme from these sources are the same. The crystal structure shows a remarkable spatial conservation of the active site residues involved in DNA binding in spite of significant differences in the structure of the enzyme-inhibitor complex, in comparison with those from the mammalian and viral sources. Ec UDG could serve as a prototype for UDGs from pathogenic prokaryotes, and provide a framework for possible drug development against such pathogens with emphasis on features of the molecule that differ from those in the human enzyme.  相似文献   

14.
Owing to its selective uracil-excision property, uracil-DNA glycosylase (UDG) has been widely utilized in diagnostic PCR applications as an effective decontamination method. Since mesophilic UDGs in PCR has been shown to degrade not just contaminant DNA but also target amplicon, there has been an increase in demand for cold-active UDGs. We characterized UDG from Photobacterium aplysiae GMD509 (Pap GMD509 UDG) expressed in Escherichia coli BL21 (DE3). The optimal temperature range of the enzyme was 25–30 °C, which is considerably lower than any other reported UDG, and the half-life of the enzyme at 40 °C and 50 °C was approximately 77 s and 33 s, respectively. These results clearly demonstrate the fragility of this enzyme upon heating. In addition, we compared the carryover contamination control property of Pap GMD509 UDG with other commercialized UDGs. The results indicate that Pap GMD509 UDG is capable of degrading contaminant DNA without a preincubation step before the main PCR reaction. These attributes imply that the Pap GMD509 UDG is a highly adequate enzyme to prevent carryover contamination during PCR.  相似文献   

15.
We demonstrate that a mutant of uracil DNA glycosylase (N123D:L191A) distinguishes between cytosine and methylcytosine. Uracil DNA glycosylase (UDG) efficiently removes uracil from DNA in a reaction in which the base is flipped into the enzyme’s active site. Uracil is selected over cytosine by a pattern of specific hydrogen bonds, and thymine is excluded by steric clash of its 5-methyl group with Y66. The N123D mutation generates an enzyme that excises cytosine. This N123D:L191A mutant excises C when it is mispaired with A or opposite an abasic site, but not when it is paired with G. In contrast no cleavage is observed with any substrates that contain 5-methylcytosine. This enzyme may offer a new approach for discriminating between cytosine and 5-methylcytosine.  相似文献   

16.
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus ΔH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus ΔH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3′ → 5′exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease.In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 Å, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.  相似文献   

17.
UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily.  相似文献   

18.
Cytosine bases can be deaminated spontaneously to uracil, causing DNA damage. Uracil-DNA glycosylase (UDG), a ubiquitous uracil-excising enzyme found in bacteria and eukaryotes, is one of the enzymes that repair this kind of DNA damage. To date, no UDG-coding gene has been identified in Methanococcus jannaschii, although its entire genome was deciphered. Here, we have identified and characterized a novel UDG from M.jannaschii designated as MjUDG. It efficiently removed uracil from both single- and double-stranded DNA. MjUDG also catalyzes the excision of 8-oxoguanine from DNA. MjUDG has a helix–hairpin–helix motif and a [4Fe–4S]-binding cluster that is considered to be important for the DNA binding and catalytic activity. Although MjUDG shares these features with other structural families such as endonuclease III and mismatch-specific DNA glycosylase (MIG), unique conserved amino acids and substrate specificity distinguish MjUDG from other families. Also, a homologous member of MjUDG was identified in Aquifex aeolicus. We report that MjUDG belongs to a novel UDG family that has not been described to date.  相似文献   

19.
Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for maintaining the integrity of genomic information. For the first time, we report the crystal structure of a family 4 UDG from Thermus thermophilus HB8 (TthUDG) complexed with uracil, solved at 1.5 angstroms resolution. As opposed to UDG enzymes in its other families, TthUDG possesses a [4Fe-4S] cluster. This iron-sulfur cluster, which is distant from the active site, interacts with loop structures and has been suggested to be unessential to the activity but necessary for stabilizing the loop structures. In addition to the iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface and the presence of proline on loops and turns is thought to contribute to the enzyme's thermostability. Despite very low levels of sequence identity with Escherichia coli and human UDGs (family 1) and E.coli G:T/U mismatch-specific DNA glycosylase (MUG) (family 2), the topology and order of secondary structures of TthUDG are similar to those of these distant relatives. Furthermore, the coordinates of the core structure formed by beta-strands are almost the same. Positive charge is distributed over the active-site groove, where TthUDG would bind DNA strands, as do UDG enzymes in other families. TthUDG recognizes uracil specifically in the same manner as does human UDG (family 1), rather than guanine in the complementary strand DNA, as does E.coli MUG (family 2). These results suggest that the mechanism by which family 4 UDGs remove uracils from DNA is similar to that of family 1 enzymes.  相似文献   

20.
A recent phylogenetic study on UDG superfamily estimated a new clade of family 3 enzymes (SMUG1-like), which shares a lower homology with canonic SMUG1 enzymes. The enzymatic properties of the newly found putative DNA glycosylase are unknown. To test the potential UDG activity and evaluate phylogenetic classification, we isolated one SMUG1-like glycosylase representative from Listeria innocua (Lin). A biochemical screening of DNA glycosylase activity in vitro indicates that Lin SMUG1-like glycosylase is a single-strand selective uracil DNA glycosylase. The UDG activity on DNA bubble structures provides clue to its physiological significance in vivo. Mutagenesis and molecular modeling analyses reveal that Lin SMUG1-like glycosylase has similar functional motifs with SMUG1 enzymes; however, it contains a distinct catalytic doublet S67-S68 in motif 1 that is not found in any families in the UDG superfamily. Experimental investigation shows that the S67M-S68N double mutant is catalytically more active than either S67M or S68N single mutant. Coupled with mutual information analysis, the results indicate a high degree of correlation in the evolution of SMUG1-like enzymes. This study underscores the functional and catalytic diversity in the evolution of enzymes in UDG superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号