首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylglutamate in HClO4 tissue extracts is first separated from glutamate by ion exchange. It is then deacylated with aminoacylase, and the resulting glutamate, after adsorption to and elution from an AG 50 column, is quantitated by a fast-HPLC method using o-phthaldialdehyde precolumn derivatization, separation in a C18 reverse-phase column, and fluorescence detection. A linear response is obtained up to 2 nmol, the detection limit is 5 pmol, and the method is suitable for assay in 1 mg liver tissue and thus for needle biopsies. When samples were analyzed by this procedure and by earlier procedures based upon detection of glutamate with glutamate dehydrogenase or upon activation of carbamoyl phosphate synthetase the results were similar. The method, which is highly specific, compares favorably in sensitivity, precision, and accuracy with all other published procedures. Using this assay, no acetylglutamate has been found in chicken liver and rat kidney.  相似文献   

2.
The production and characterization of covalent amyloglucosidase-antibody conjugates using anti-human serum albumin immunoglobulin G are described. The conjugation procedure is based on the periodate oxidation of carbohydrate moieties that are covalently linked to the enzyme, followed by Schiff's base formation with amino residues on IgG. An ultrasensitive enzyme cycling assay for glucose, the product of maltose cleavage by amyloglucosidase, was developed in order to increase the sensitivity of detecting the enzyme-antibody conjugate. The cycling assay, which allows the accurate measurement of glucose in the picomole range, involves an enzymatic conversion of glucose to glucose-6-phosphate and then isomerization to fructose-6-phosphate. A futile cycle between fructose-6-phosphate and fructose-1,6-diphosphate results in accumulation of adenosine diphosphate at a rate proportional to the original glucose concentration. The rate was monitored by a spectrophotometric system involving pyruvate kinase, phospho(enol)pyruvate, lactate dehydrogenase, and diphosphopyridine nucleotide.  相似文献   

3.
Saccharomyces cerevisiae possesses 2-oxoacid dehydrogenase (EC 1.2.4.4) similar to that found in mammalian cells. The activity is readily detected in cells which have been cultured in a minimal medium containing a branched-chain amino acid. Mutants defective in lipoamide dehydrogenase also lack 2-oxoacid dehydrogenase and are thus unable to catabolize branched-chain amino acids: 2-oxoacids accumulate in the cultures of these cells. The 2-oxoacid dehydrogenase activity is distinct from both 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase, because it could not be detected in assay conditions which permitted the measurement of 2-oxoglutarate dehydrogenase and vice versa. In addition, a strain lacking 2-oxoglutarate dehydrogenase (kgd1::URA3) retained 2-oxoacid dehydrogenase as did a mutant specifically lacking pyruvate dehydrogenase (pda1::Tn5ble). In complex media the specific activity of this enzyme is highest in YEP (yeast extract-peptone)-glycerol and lowest in YEP-acetate and YEP-fructose. 2-Oxoacid dehydrogenase could not be detected in cells which had been transferred to sporulation medium. These results suggest that in S. cerevisiae the catabolism of branched-chain amino acids occurs via 2-oxoacid dehydrogenase, not via the 'Ehrlich Pathway'.  相似文献   

4.
Oxidative decarboxylation of pyruvate by branched-chain 2-oxo acid dehydrogenase can result in overestimation of the expressed and total activity of hepatic pyruvate dehydrogenase. Pyruvate is a poor substrate for branched-chain 2-oxo acid dehydrogenase relative to the branched-chain oxo acids; however, the comparable total activities of the two complexes in liver, the much greater activity state of branched-chain 2-oxo acid dehydrogenase compared with pyruvate dehydrogenase in most physiological states, and the use of high pyruvate concentrations, explain the interference that can occur in conventional radiochemical or indicator-enzyme linked assays of pyruvate dehydrogenase. Goat antibody that specifically inhibited branched-chain 2-oxo acid dehydrogenase was used in this study to provide a more specific assay for pyruvate dehydrogenase.  相似文献   

5.
A continuous spectrophotometric assay for cAMP phosphodiesterase has been optimized and adopted for assaying calmodulin in biological samples. This method utilizes the coupled enzyme reactions of myokinase, pyruvate kinase, and lactic acid dehydrogenase. The effective molar extinction coefficient for this method is 1.25 X 10(4) at 340 nm. A point-assay method capable of handling a large number of samples has also been established. This same procedure can also be adopted for the assay of calcineurin and other calmodulin-binding proteins.  相似文献   

6.
The gene encoding the dihydrolipoyltransacetylase component (E2) of the pyruvate dehydrogenase complex from Azotobacter vinelandii has been cloned in Escherichia coli. A plasmid containing a 2.8-kbp insert of A. vinelandii chromosomal DNA was obtained and its nucleotide sequence determined. The gene comprises 1911 base pairs, 637 codons excluding the initiation codon GUG and stop codon UGA. It is preceded by the gene encoding the pyruvate dehydrogenase component (E1) of pyruvate dehydrogenase complex and by an intercistronic region of 11 base pairs containing a good ribosome binding site. The gene is followed downstream by a strong terminating sequence. The relative molecular mass (64913), amino acid composition and N-terminal sequence are in good agreement with information obtained from studies on the purified enzyme. Approximately the first half of the gene codes for the lipoyl domain. Three very homologous sequences are present, which are translated in three almost identical units, alternated with non-homologous regions which are very rich in alanyl and prolyl residues. The N-terminus of the catalytic domain is sited at residue 381. Between the lipoyl domain and the catalytic domain, a region of about 50 residues is found containing many charged amino acid residues. This region is characterized as a hinge region and is involved in the binding of the pyruvate dehydrogenase and lipoamide dehydrogenase components. The homology with the dihydrolipoyltransacetylase from E. coli is high: 50% amino acid residues are identical.  相似文献   

7.
Pseudomonads are the only organisms so far known to produce two lipoamide dehydrogenases (LPDs), LPD-Val and LPD-Glc. LPD-Val is the specific E3 component of branched-chain oxoacid dehydrogenase, and LPD-Glc is the E3 component of 2-ketoglutarate and possibly pyruvate dehydrogenases and the L-factor of the glycine oxidation system. Three mutants of Pseudomonas putida, JS348, JS350, and JS351, affected in lpdG, the gene encoding LPD-Glc, have been isolated; all lacked 2-ketoglutarate dehydrogenase, but two, JS348 and JS351, had normal pyruvate dehydrogenase activity. The pyruvate and 2-ketoglutarate dehydrogenases of the wild-type strain of P. putida were both inhibited by anti-LPD-Glc, but the pyruvate dehydrogenase of the lpdG mutants was not inhibited, suggesting that the mutant pyruvate dehydrogenase E3 component was different from that of the wild type. The lipoamide dehydrogenase present in one of the lpdG mutants, JS348, was isolated and characterized. This lipoamide dehydrogenase, provisionally named LPD-3, differed in molecular weight, amino acid composition, and N-terminal amino acid sequence from LPD-Glc and LPD-Val. LPD-3 was clearly a lipoamide dehydrogenase as opposed to a mercuric reductase or glutathione reductase. LPD-3 was about 60% as effective as LPD-Glc in restoring 2-ketoglutarate dehydrogenase activity and completely restored pyruvate dehydrogenase activity in JS350. These results suggest that LPD-3 is a lipoamide dehydrogenase associated with an unknown multienzyme complex which can replace LPD-Glc as the E3 component of pyruvate and 2-ketoglutarate dehydrogenases in lpdG mutants.  相似文献   

8.
Fluorometric assay procedures are described for the quantitative measurements of succinyl-CoA and propionyl-CoA down to concentrations of 0.1 μm in the reaction mixture. The enzymatic assay for succinyl-CoA couples the reaction of 3-ketoacid CoA transferase (succinyl-CoA transferase) to β-OH butyryl-CoA dehydrogenase. A simple purification procedure is described for the isolation of succinyl-CoA transferase from beef heart. Two enzyme assays for propionyl-CoA are described. In the first, CoA, acetyl-CoA and propionyl-CoA are assayed by sequential addition of α-ketoglutarate dehydrogenase, citrate synthase and phosphotransacetylase. The second assay for propionyl-CoA utilized propionyl-CoA carboxylase to convert propionyl-CoA to methylmalonyl-CoA in the presence of ATP and bicarbonate, and the ADP formed was assayed by coupling pyruvate kinase with lactate dehydrogenase. Illustrations are given for the application of these assay procedures to measurements of succinyl-CoA and propionyl-CoA in neutralized perchloric acid extracts prepared from rat heart and liver mitochondria incubated under a variety of conditions.  相似文献   

9.
Aminoacylase 1 is a zinc-binding enzyme which hydrolyzes N-acetyl amino acids into the free amino acid and acetic acid. Deficiency of aminoacylase 1 due to mutations in the aminoacylase 1 (ACY1) gene follows an autosomal-recessive trait of inheritance and is characterized by accumulation of N-acetyl amino acids in the urine. In affected individuals neurological findings such as febrile seizures, delay of psychomotor development and moderate mental retardation have been reported. Except for one missense mutation which has been studied in Escherichia coli, mutations underlying aminoacylase 1 deficiency have not been characterized so far. This has prompted us to approach expression studies of all mutations known to occur in aminoacylase 1 deficient individuals in a human cell line (HEK293), thus providing the authentic human machinery for posttranslational modifications. Mutations were inserted using site directed mutagenesis and aminoacylase 1 enzyme activity was assessed in cells overexpressing aminoacylase 1, using mainly the natural high affinity substrate N-acetyl methionine. Overexpression of the wild type enzyme in HEK293 cells resulted in an approximately 50-fold increase of the aminoacylase 1 activity of homogenized cells. Most mutations resulted in a nearly complete loss of enzyme function. Notably, the two newly discovered mutations p.Arg378Trp, p.Arg378Gln and the mutation p.Arg393His yielded considerable residual activity of the enzyme, which is tentatively explained by their intramolecular localization and molecular characteristics. In contrast to aminoacylase 1 variants which showed no detectable aminoacylase 1 activity, aminoacylase 1 proteins with the mutations p.Arg378Trp, p.Arg378Gln and p.Arg393His were also detected in Western blot analysis. Investigations of the molecular bases of additional cases of aminoacylase 1 deficiency contribute to a better understanding of this inborn error of metabolism whose clinical significance and long-term consequences remain to be elucidated.  相似文献   

10.
A continuous spectrophotometric assay has been devised for dihydrolipoamide transacetylase and transsuccinylase, the E2 components of the pyruvate and α-oxoglutarate dehydrogenase enzyme complexes. The procedure offers several advantages over other available methods.  相似文献   

11.
A new method for the determination of adenosine 5′-phosphosulphate (APS) kinase activity using a spectrophotometric assay is described. This procedure involves the spectrophotometric determination of sulphate- or APS-dependent production of ADP in the presence of pyruvate kinase and lactate dehydrogenase. Methods are described that overcome interference from contaminating enzymes and compounds. This method also provides a means for a critical examination of the substrate specificity of the sulphate-activating enzymes.  相似文献   

12.
In order to purify the lipoamide dehydrogenase associated with the glycine decarboxylase complex of pea leaf mitochondria, the activity of free lipoamide dehydrogenase has been separated from those of the pyruvate and 2-oxoglutarate dehydrogenase complexes under conditions in which the glycine decarboxylase dissociates into its component subunits. This free lipoamide dehydrogenase which is normally associated with the glycine decarboxylase complex has been further purified and the N-terminal amino acid sequence determined. Positive cDNA clones isolated from both a pea leaf and embryo lambda gt11 expression library using an antibody raised against the purified lipoamide dehydrogenase proved to be the product of a single gene. The amino acid sequence deduced from the open reading frame included a sequence matching that determined directly from the N terminus of the mature protein. The deduced amino acid sequence shows good homology to the sequence of lipoamide dehydrogenase associated with the pyruvate dehydrogenase complex from Escherichia coli, yeast, and humans. The corresponding mRNA is strongly light-induced both in etiolated pea seedlings and in the leaves of mature plants following a period of darkness. The evidence suggests that the mitochondrial enzyme complexes: pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, and glycine decarboxylase all use the same lipoamide dehydrogenase subunit.  相似文献   

13.
An immunochemical enzyme immunoassay model system was developed and compared for maximum sensitivity with a radioimmunoassay method and the classic enzyme activity method for the detection of pyruvate dehydrogenase complex (PDHc) and its decarboxylating subunit, pyruvate dehydrogenase (E1), isolated from Escherichia coli. Cross-linked large molecular weight antibody-enzyme conjugate systems are compared with heterobifunctional singular antibody conjugates substituted with high levels of horseradish peroxidase. Both polyclonal and monoclonal antibodies generated to the Escherichia coli PDHc and E1 antigens were used to develop a double-antibody sandwich microtiter plate enzyme-linked immunosorbent assay. It is demonstrated that a double sandwich immunochemical assay system can be quantitative for PDHc, can detect PDHc in crude cell lysates and has levels of sensitivity of 2.0.10(-16) mol for the detection of PDHc. This assay model system provides specific antibody selection criteria and coupling methods needed to select specific antisera that cross-react with human PDHc. This rapid and sensitive immunochemical assay method clearly demonstrates that sensitive mass assay systems can be developed for the detection of PDHc. Different from Western blot, this methodology could be used to generate mass assays which could be applied to the rapid detection of mammalian antigens (employing the corresponding antibodies) implicated in a number of pyruvate dehydrogenase deficiencies associated with human disorders.  相似文献   

14.
A genomic DNA fragment encoding aminoacylase activity of the eubacterium Bacillus stearothermophilus was cloned into Escherichia coli. Transformants expressing aminoacylase activity were selected by their ability to complement E. coli mutants defective in acetylornithine deacetylase activity, the enzyme that converts N-acetylornithine to ornithine in the arginine biosynthetic pathway. The 2.3-kb cloned fragment has been entirely sequenced. Analysis of the sequence revealed two open reading frames, one of which encoded the aminoacylase. B. stearothermophilus aminoacylase, produced in E. coli, was purified to near homogeneity in three steps, one of which took advantage of the intrinsic thermostability of the enzyme. The enzyme exists as homotetramer of 43-kDa subunits as shown by cross-linking experiments. The deacetylating capacity of purified aminoacylase varies considerably depending on the nature of the amino acid residue in the substrate. The enzyme hydrolyzes N-acyl derivatives of aromatic amino acids most efficiently. Comparison of the predicted amino acid sequence of B. stearothermophilus aminoacylase with those of eubacterial acetylornithine deacylase, succinyldiaminopimelate desuccinylase, carboxypeptidase G2, and eukaryotic aminoacylase I suggests a common origin for these enzymes.  相似文献   

15.
A spectrophotometric endpoint assay for determination of branched-chain alpha-keto acids is described. The assay depends on measurement of the NADH produced after addition of branched-chain alpha-keto acid dehydrogenase. Interference by pyruvate and alpha-ketobutyrate was eliminated by pretreating the sample with pyruvate dehydrogenase. The method yielded a peripheral venous plasma value of 59 +/- 5 microM (mean +/- SE) for the branched-chain alpha-keto acids of five overnight fasted healthy humans.  相似文献   

16.
An improved procedure for the assay of pyruvate dehydrogenase   总被引:1,自引:0,他引:1  
A modified procedure for the determination of the decarboxylation of [1-14C]pyruvate by pyruvate dehydrogenase is described which requires only small amounts of bovine kidney pyruvate dehydrogenase complex. The activity is greatly increased by the addition of high concentrations of ferricyanide.  相似文献   

17.
A substance capable of stimulating pyruvate dehydrogenase (PDH) and suppressing glucose-6-phosphatase (G-6-Pase) in a cell-free system was prepared from insulin-treated human placental plasma membranes and peripheral blood mononuclear cells by formic acid extraction. This material was partially purified by molecular-exclusion chromatography, ion-exchange chromatography, and hydroxylapatite chromatography. This was found to stimulate pyruvate dehydrogenase and inhibit glucose-6-phosphatase in a dose-dependent manner. The amount or ability of this substance to stimulate pyruvate dehydrogenase was increased in the proportion to the concentration of insulin. The stimulation of pyruvate dehydrogenase by the factor was eliminated when sodium fluoride was presented in the assay of the activation. This result implied that the activation of pyruvate dehydrogenase was mediated by the stimulation of the phosphatase of pyruvate dehydrogenase complex. Each material isolated from insulin-treated human placental plasma membranes and mononuclear cells shared a number of important characteristics of putative second messengers of insulin action as follows: (i) heat and acid stability; (ii) a similar molecular weight; (iii) increased activity of pyruvate dehydrogenase in a insulin-dependent manner; and (iv) stimulated pyruvate dehydrogenase by the sodium fluoride-sensitive mechanism. This human putative second messenger of insulin action was eluted from the anion-exchange resin AG1-X8 at an ionic strength of 3–4 m, as well as from the hydroxylapatite column at a phosphate concentration of 2–3 m.  相似文献   

18.
A Mareck  H Bessam  P Delattre  B Foucher 《Biochimie》1986,68(10-11):1175-1180
A simple purification procedure for the 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase complexes of Neurospora crassa mitochondria is described. After fractionated precipitations with polyethylene glycol, elimination of thiol proteins, and gel-filtration chromatography, the resulting preparations contained both activities. Covalent chromatography on thiol-activated Sepharose CL-4B allowed the specific binding of the 2-oxoglutarate dehydrogenase complex activity in the presence of 2-oxoglutarate, whereas the pyruvate dehydrogenase complex activity was retained in the presence of pyruvate. The purified 2-oxoglutarate dehydrogenase complex showed 4 protein bands by electrophoresis under dissociating conditions with apparent molecular weights of 160,000, 56,200, 55,600, 52,600 and a Km value of 3.8 X 10(-4) M for 2-oxoglutarate. The purified pyruvate dehydrogenase complex showed 5 protein bands with apparent molecular weights of 160,000, 57,600, 55,600, 52,500 and 37,100 and a Km value of 3.2 X 10(-4) M for pyruvate.  相似文献   

19.
Treatment of rats for 3 h with dexamethasone was shown to stimulate both pyruvate carboxylation and decarboxylation in the subsequently isolated mitochondria. The effect of hormone treatment on pyruvate carboxylation was also apparent in liver homogenates assayed within minutes of killing the animal and was independent of the temperature at which the assay was performed, suggesting that it was not an artifact of the mitochondrial preparation procedure. The stimulation of both aspects of pyruvate metabolism in the intact organelle was independent of the induction of either pyruvate carboxylase or pyruvate dehydrogenase. Similarly, there was no change in the percentage of pyruvate dehydrogenase in the active form, indicating that the effect of steroid treatment on pyruvate oxidation was not via changes in the degree of phosphorylation of the enzyme. Adrenalectomizing the animals for a period of 14 days before the experiment had no effect on either parameter. Glucocorticoid treatment of the animals increased the rate of pyruvate uptake into the mitochondria, as measured by the titration of pyruvate metabolism with alpha-cyano-4-hydroxycinnamate, a specific inhibitor of the pyruvate translocator. It also increased the intramitochondrial concentrations of acetyl-CoA and ATP and led to an elevated [ATP]/[ADP] ratio within the mitochondria. It is suggested that both enzymes of pyruvate metabolism exist in the mitochondria under considerable restraint and that glucocorticoids act to relieve this restraint by alterations in substrate supply and the intramitochondrial concentrations of effector molecules.  相似文献   

20.
cDNA clones corresponding to the entire length of mRNA for the alpha subunit of human pyruvate dehydrogenase (EC 1.2.4.1), the E1 component of the pyruvate dehydrogenase complex, have been isolated from liver cDNA libraries. Two classes of cDNA clones were obtained and these correspond to two forms of pyruvate dehydrogenase E1 alpha mRNA. Both mRNA species have been demonstrated in a variety of human tissues and cultured fibroblasts. The cDNA sequence has been determined and, from it, the protein sequence of the human E1 alpha subunit was deduced. The protein is synthesized with a typical mitochondrial import leader sequence and the peptide bond at which this sequence is cleaved after transport into the mitochondrion has been determined by direct amino acid sequencing of the mature E1 alpha subunit. The human pyruvate dehydrogenase E1 alpha subunit contains identical phosphorylation sites to those found in the corresponding porcine protein. Preliminary studies of pyruvate dehydrogenase E1 alpha mRNA in cultured fibroblasts from patients with severe pyruvate dehydrogenase deficiency have revealed considerable heterogeneity as would be expected from protein studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号