首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horseradish peroxidase (HRP) and colloidal gold-labeled proteins enter many of the endocytic organelles of bloodstream forms of Trypanosoma brucei and T. congolense. However, the colloidal gold markers were excluded from substantial parts of the pathway that contained HRP. Morphometric studies revealed that HRP entered organelles that accounted for approximately 5% of the total cell volume while transferrin-gold entered organelles that comprised approximately 2% of the total cell volume. In addition, large colloidal gold particles were excluded from organelles that contained smaller gold particles. Antibodies, raised against the variable surface glycoprotein, when applied to thawed cryosections were found to label structures from which endocytosed colloidal gold coupled to bovine serum albumin (BSA) was excluded. Endocytosis was shown to occur in two in vitro propagated forms of trypanosomes, similar to those found in the insect vector (Glossina spp.). The mammal-infective metacyclic forms were similar to bloodstream forms in that they endocytosed HRP and colloidal gold markers but excluded colloidal gold from approximately 3% of the endocytic organelles. Estimation of the flagellar pocket volumes of bloodstream form T. brucei showed that this organelle occupied 0.5% to 1.4% of the total cell volume. The flagellar pocket volume of T. congolense varied between life-cycle stages, with a fractional volume of 4.4% for bloodstream forms, 2.3% for metacyclic forms and 1.4% for procyclic forms. Endocytosis of HRP, but not of protein-gold markers, occurred in procyclic (uncoated) forms. Endocytosis by procyclic forms has heretofore not been reported.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A Golgi-associated bi-lobed structure was previously found to be important for Golgi duplication and cell division in Trypanosoma brucei. To further understand its functions, comparative proteomics was performed on extracted flagellar complexes (including the flagellum and flagellum-associated structures such as the basal bodies and the bi-lobe) and purified flagella to identify new bi-lobe proteins. A leucine-rich repeats containing protein, TbLRRP1, was characterized as a new bi-lobe component. The anterior part of the TbLRRP1-labeled bi-lobe is adjacent to the single Golgi apparatus, and the posterior side is tightly associated with the flagellar pocket collar marked by TbBILBO1. Inducible depletion of TbLRRP1 by RNA interference inhibited duplication of the bi-lobe as well as the adjacent Golgi apparatus and flagellar pocket collar. Formation of a new flagellum attachment zone and subsequent cell division were also inhibited, suggesting a central role of bi-lobe in Golgi, flagellar pocket collar and flagellum attachment zone biogenesis.  相似文献   

3.
Trypanosome variant surface glycoproteins (VSGs) have a novel glycan-phosphatidylinositol membrane anchor, which is cleavable by a phosphatidylinositol-specific phospholipase C. A similar structure serves to anchor some membrane proteins in mammalian cells. Using kinetic and ultrastructural approaches, we have addressed the question of whether this structure directs the protein to the cell surface by a different pathway from the classical one described in other cell types for plasma membrane and secreted glycoproteins. By immunogold labeling on thin cryosections we were able to show that, intracellularly, VSG is associated with the rough endoplasmic reticulum, all Golgi cisternae, and tubulovesicular elements and flattened cisternae, which form a network in the area adjacent to the trans side of the Golgi apparatus. Our data suggest that, although the glycan-phosphatidylinositol anchor is added in the endoplasmic reticulum, VSG is nevertheless subsequently transported along the classical intracellular route for glycoproteins, and is delivered to the flagellar pocket, where it is integrated into the surface coat. Treatment of trypanosomes with 1 microM monensin had no effect on VSG transport, although dilation of the trans-Golgi stacks and lysosomes occurred immediately. Incubation of trypanosomes at 20 degrees C, a treatment that arrests intracellular transport from the trans-Golgi region to the cell surface in mammalian cells, caused the accumulation of VSG molecules in structures of the trans-Golgi network, and retarded the incorporation of newly synthesized VSG into the surface coat.  相似文献   

4.
SYNOPSIS. The mechanisms of ferritin uptake and digestion differ in bloodstream and culture forms of Trypanosoma brucei. Ferritin enters bloodstream forms from the flagellar pocket by pinocytosis in large spiny-coated vesicles. These vesicles become continuous with straight tubular extensions of a complex, mostly tubular, collecting membrane system where ferritin is concentrated. From the collecting membrane system the tracer enters large digestive vacuoles. Small spiny-coated vesicles, which never contain ferritin, are found in the Golgi region, fusing with the collecting membrane system, and around the flagellar pocket. Acid phosphatase activity is present in some small spiny-coated vesicles which may represent primary lysosomes. This enzymic activity is also found in the flagellar pocket, pinocytotic vesicles, the collecting membrane system, the Golgi (mature face), and digestive vacuoles of bloodstream forms. About 50% of the acid phosphatase activity of blood forms is latent. The remaining nonlatent activity is firmly cell-associated and probably represents activity in the flagellar pocket. The structures involved in ferritin uptake and digestion are larger and more active in the short stumpy than in the long slender bloodstream forms. The short stumpy forms also have more autophagic vacuoles. No pinocytotic large, spiny-coated vesicles or Golgi-derived, small spiny-coated vesicles are seen in culture forms. Ferritin leaves the flagellar pocket of these forms and enters small smooth cisternae located just beneath bulges in the pocket membrane. The tracer then passes through a cisternal collecting membrane network, where it is concentrated, and then into multivesicular bodies. In the culture forms, acid phosphatase activity is localized in the cisternal system, multivesicular bodies, the Golgi (mature face), and small vesicles in the Golgi and cisternal regions. The flagellar pocket has no acid phosphatase activity, and almost all the activity is latent in these forms. The culture forms do not release acid phosphatase into culture medium during 4 days growth. Uptake of ferritin by all forms is almost completely inhibited by low temperature. These differences among the long slender and short stumpy bloodstream forms and culture forms are undoubtedly adaptive and reflect different needs of the parasite in different life cycle stages.  相似文献   

5.
Trypanosoma brucei rhodesiense is the causative agent of human African sleeping sickness. While the closely related subspecies T. brucei brucei is highly susceptible to lysis by a subclass of human high-density lipoproteins (HDL) called trypanosome lytic factor (TLF), T. brucei rhodesiense is resistant and therefore able to establish acute and fatal infections in humans. This resistance is due to expression of the serum resistance-associated (SRA) gene, a member of the variant surface glycoprotein (VSG) gene family. Although much has been done to establish the role of SRA in human serum resistance, the specific molecular mechanism of SRA-mediated resistance remains a mystery. Thus, we report the trafficking and steady-state localization of SRA in order to provide more insight into the mechanism of SRA-mediated resistance. We show that SRA traffics to the flagellar pocket of bloodstream-form T. brucei organisms, where it localizes transiently before being endocytosed to its steady-state localization in endosomes, and we demonstrate that the critical point of colocalization between SRA and TLF occurs intracellularly.  相似文献   

6.
A low density membrane fraction, isolated from the bloodstream stage of Trypanosoma rhodesiense and enriched in flagellar pocket membrane, was characterized with regard to antigenicity using antibodies raised against purified flagellar pocket membrane. Mild trypsinolysis of flagellar pocket membrane released two small peptides (Mr = 13-16 X 10(3)) separated by chromatofocusing (pI = 6.8 and 5.8) that were antigenic as monitored by fused rocket immunoelectrophoresis. Both of these antigenic peptides were enriched in relative fluorescence when flagellar pocket membrane was prepared from surface labeled (fluorescamine-beta-cyclodextrin) trypanosomes, indicating that cleaved peptides were on the external (luminal) side of the flagellar pocket membrane. More extensive release of fluorescamine labeled flagellar pocket membrane components was affected using mild detergent treatment (0.15% Zwittergent 3-12/0.4% Triton X-100), crossed immunoelectrophoresis separating two prominent antigens was more pronounced after incubation of flagellar pocket membrane with either porcine pancreas phospholipase A2 or umbilical cord sphingomyelinase. The use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent electroblotting to nitrocellulose also revealed two principal flagellar pocket membrane antigens (Mr approximately 60 and 66 X 10(3)), the latter showing greater release after exposure to sphingomyelinase or phospholipase, compared to mild detergent or 50 mM acetate, pH 5.0. Both antigens were glycoprotein as judged by electroblotting and the use of concanavalin A conjugated horseradish peroxidase as probe. Neither flagellar pocket membrane antigen was found to react with monoclonal antibodies prepared against T. rhodesiense variable surface antigen. The use of flagellar pocket membrane in the presence of Freund's complete adjuvant was found to protect mice against challenge infections with either the CP344 clone or uncloned CT Well-come isolate of T. rhodesiense.  相似文献   

7.
Actin is expressed at similar levels but in different locations in bloodstream and procyclic forms of Trypanosoma brucei. In bloodstream forms actin colocalizes with the highly polarized endocytic pathway, whereas in procyclic forms it is distributed throughout the cell. RNA interference demonstrated that in bloodstream forms, actin is an essential protein. Depletion of actin resulted in a rapid arrest of cell division, termination of vesicular traffic from the flagellar pocket membrane leading to gross enlargement of the pocket, loss of endocytic activity and eventually cell death. These results indicate that actin is required for the formation of coated vesicles from the flagellar pocket membrane, which is the first step in the endocytic pathway. Although loss of actin in procyclic cells did not affect growth, the trans region of the Golgi became distorted and enlarged and appeared to give rise to a heterogeneous population of vesicles. However, the flagellar pocket was not affected. These findings suggest that trypanosomes have different functional requirements for actin during the bloodstream and procyclic phases of the life cycle.  相似文献   

8.
African trypanosomes contain a membrane-bound enzyme capable of removing dimyristylglycerol from the membrane-attached form of the variable surface glycoprotein (mfVSG; Ferguson, M. A. J., K. Halder, and G. A. M. Cross, 1985, J. Biol Chem., 260:4963-4968). Although mfVSG phospholipase-C has been implicated in the removal of the VSG from the trypanosome surface (Cardoso de Almeida, M. L., and M. J. Turner, 1983, Nature (Lond.)., 302:349-352; Ferguson, M. A. J., K. Halder, and G. A. M. Cross, 1985, J. Biol Chem., 260:4963-4968), its precise function and subcellular location have not been determined. We have developed a procedure for the separation of the cell fractions and organelles of Trypanosoma brucei brucei (and other trypanosome species) by differential sucrose and isopycnic PercollR centrifugation. These fractions were tested for mfVSG phospholipase activity using Trypanosoma brucei mfVSG labeled with 3H-myristic acid as substrate. The highest enzyme-specific activity was associated with the flagella and evidence is presented to suggest that it is localized in the flagellar pocket. Some activity was also associated with the Golgi complex. These results suggest that the mfVSG phospholipase is localized primarily in the membrane of the flagella pocket and possibly other membrane organelles derived from and associated with this structure, and may be part of the VSG-membrane recycling system in African trypanosomes. The activity of mfVSG phospholipase amongst various trypanosome species was determined. We show that, in contrast to the bloodstream forms of Trypanosoma brucei, cultured procyclic Trypanosoma brucei and bloodstream Trypanosoma vivax had little or no mfVSG phospholipase activity. The activity found in bloodstream forms of Trypanosoma congolense was intermediate between Trypanosoma vivax and Trypanosoma brucei.  相似文献   

9.
Trypanosomes use antigenic variation of their variant-specific surface glycoprotein (VSG) coat as defense against the host immune system. However, in order to sustain their growth, they need to expose conserved epitopes, allowing host macromolecule binding and receptor-mediated endocytosis. Here we show that Trypanosoma brucei uses the conserved chitobiose-oligomannose (GlcNAc(2)-Man(5-9)) moieties of its VSG as a binding ligand for tumor necrosis factor (TNF), a host cytokine with lectin-like properties. As endocytosis in trypanosomes is restricted to the flagellar pocket, we show that soluble flagellar pocket extracts, and in particular soluble VSG, inhibit the binding of (125)I-TNF to trypanosomes. The interaction between TNF and VSG is confirmed by affinity chromatography, biosensor, and dot-blot affinity measurements, and soluble VSG inhibition of TNF-mediated trypanolysis. In all approaches, removal of N-linked carbohydrates abrogates the TNF-VSG interaction. In addition, synthetic high mannose oligosaccharides can block TNF-VSG interactions, and a VSG glycopeptide carrying the GlcNAc(2)-Man(5-9) moiety is shown to inhibit TNF-mediated trypanosome killing in mixed parasite/macrophage cell cultures. Together, these results support the observation that TNF plays a role in growth control of trypanosomes and, moreover, suggest that, by the use of conserved VSG carbohydrates as lectin-binding epitopes, trypanosomes can limit the necessity to express large numbers of invariant surface exposed receptors.  相似文献   

10.
Dynamins are a family of 100-kD GTPases comprised of at least three distinct gene products and multiple alternatively spliced variants. Homologies with the shibire gene product in Drosophila melanogaster and with Vps1p and Dnm1p in Saccharomyces cerevisiae suggest that dynamins play an important role in vesicular transport. Morphological studies have localized brain dynamin to coated pits and tubular invaginations at the plasma membrane, where it is believed to facilitate the formation of endocytic vesicles. Because similar membrane-budding events occur at the Golgi apparatus and multiple dynamin isoforms exist, we have studied the distribution of dynamins in mammalian cells. To this end, we generated and characterized peptide-specific antibodies directed against conserved regions of the dynamin family. By immunoblot analysis, these antibodies reacted specifically with a 100-kD protein in fibroblasts that sedimented with membranes and microtubules in vitro in a manner similar to brain dynamin. By immunofluorescence microscopy, these antibodies strongly labeled the Golgi complex in cultured fibroblasts and melanocytes, as confirmed by double labeling with a Golgi-specific antibody. Furthermore, Western blot analysis showed significant enrichment of a 100-kD dynamin band in Golgi fractions isolated from the liver. To substantiate these findings, we use a specific antidynamin antibody to immunoisolate Golgi membranes from subcellular Golgi fractions, as determined by EM and immunoblot analysis. This study provides the first morphological and biochemical evidence that a dynamin-like protein associates with the Golgi apparatus in mammalian cells, and suggests that dynamin-related proteins may have multiple cytoplasmic distributions. The potential contributions of dynamin to the secretory and endocytic pathways are discussed.  相似文献   

11.
Membrane proteins were isolated from purified Trypanosoma brucei coated endocytotic vesicles by phase separation with Triton X-114. The largest abundant membrane protein was a doublet band with a molecular mass of about 77 kDa. A specific antiserum was prepared against this protein by immunization with antigen bands excised from sodium dodecyl sulfate-polyacrylamide gels. Immunoblot analyses with this antiserum showed that the 77-kDa protein was present in other T. brucei, in T. congolense, and in T. vivax bloodstream-stage parasites but absent from procyclic (tsetse fly midgut)-stage trypanosomes. Antigenically related molecules of 58, 300, and 15.5 kDa were also detected. The 300- and 15.5-kDa molecules were not in purified coated vesicles; they were detected in whole bloodstream- and procyclic-form T. brucei organisms. Immunofluorescent studies localized the antigen to the region between the flagellar pocket and the nucleus of bloodstream-form parasites. Ultrastructurally, the antigen was detected on membranes of endosomes and lysosome-like structures that contained endocytosed markers.  相似文献   

12.
The structure of the flagellar apparatus of excavate flagellate Klosteria bodomorphis was considered. Two naked heterodynamic flagella covered with a dense layer of glycocalyx emerge from a single flagellar pocket. The kinetosomes are parallel or at an acute angle to each other. The dorsal and ventral rootlets run from the kinetosomes and produce dorsal and ventral bands which are not connected to each other. The MTR band begins in the wall of the flagellar pocket. The long cytopharynx is reinforced with an MTR band and additional microtubules. A small fibril and a horseshoe-shaped structure lie in the anterior part of the cytopharynx. The vesicular nucleus and Golgi apparatus have the typical structure. The mitochondrion has discoid cristae. The kinetoplast as a compact formation was not found. The similarity between K. bodomorphis and other free-living kinetoplastids is discussed.  相似文献   

13.
Bloodstream-form Trypanosoma brucei have two 14-3-3 proteins, which are required for parasite multiplication. We here describe the effects of 14-3-3 depletion on vesicular transport of variant surface glycoprotein (VSG). 14-3-3 depletion had no detectable effect on de novo synthesis and trafficking of VSG to the cell surface, or on VSG endocytosis. Despite strong inhibition of cell division, the flagellar pocket was not enlarged and the ultrastructure of internal organelles appeared normal. The Rab11-positive recycling endosome compartment was, however, fivefold smaller than normal, and the rate of return of recycling VSG to the surface was correspondingly reduced. Down-regulating 14-3-3 also prevented enlargement of the flagellar pocket by clathrin depletion. These results suggest that there is a remarkably specific requirement for 14-3-3 in normal functioning of the Rab11-positive recycling endosome compartment.  相似文献   

14.
The ultrastructure of the amoeboid flagellate Thaumatomonas zhukovi sp. is presented. The cell is covered by cell body scales that formed on the surface of mitochondria. Capturing bacteria, the pseudopodia emerge from the ventral groove, which is supported by two longitudinal microtubular bands. The heterodynamic flagella emerge from the small flagellar pocket. Both flagella are covered by cone-shaped scales and thin twisted mastigonemes. The transitional zone of the flagella contains a thin-walled cylinder. The transversal plate of the flagella rises above the cell surface. The kinetosomes lie parallel to each other. The flagellar root system consists of three microtubular bands and a fibrillar rhizoplast. The vesicular nucleus and the Golgi apparatus have typical structures. The cytoplasm contains microbodies and food vacuoles. Mitochondria contain tubular cristae. Extrusive organelles (kinetocysts), which contain amorphous material and a capsule, were found in the cytoplasm. The capsule consists of a theca and a cylinder. The resemblance of Thaumatomonas zhukovi to other thaumatomonads is discussed.  相似文献   

15.
Trypanosoma brucei bloodstream forms express a densely packed surface coat consisting of identical variant surface glycoprotein (VSG) molecules. This surface coat is subject to antigenic variation by sequential expression of different VSG genes and thus enables the cells to escape the mammalian host's specific immune response. VSG turnover was investigated and compared with the antigen switching rate. Living cells were radiochemically labeled with either 125I-Bolton-Hunter reagent or 35S-methionine, and immunogold-surface labeled for electron microscopy studies. The fate of labeled VSG was studied during subsequent incubation or cultivation of labeled trypanosomes. Our data show that living cells slowly released VSG into the medium with a shedding rate of 2.2 +/- 0.6% h-1 (t1/2 = 33 +/- 9 h). In contrast, VSG degradation accounted for only 0.3 +/- 0.06% h-1 (t1/2 = 237 +/- 45 h) and followed the classical lysosomal pathway as judged by electron microscopy. Since VSG uptake by endocytosis was rather high, our data suggest that most of the endocytosed VSG was recycled to the surface membrane. These results indicate that shedding of VSG at a regular turnover rate is sufficient to remove the old VSG coat within one week, and no increase of the VSG turnover rate seems to be necessary during antigenic variation.  相似文献   

16.
Recently, proteins linked to glycosylphosphatidylinositol (GPI) residues have received considerable attention both for their association with lipid microdomains and for their specific transport between cellular membranes. Basic features of trafficking of GPI-anchored proteins or glycolipids may be explored in flagellated protozoan parasites, which offer the advantage that their surface is dominated by these components. In Trypanosoma brucei, the GPI-anchored variant surface glycoprotein (VSG) is efficiently sorted at multiple intracellular levels, leading to a 50-fold higher membrane concentration at the cell surface compared with the endoplasmic reticulum. We have studied the membrane and VSG flow at an invagination of the plasma membrane, the flagellar pocket, the sole region for endo- and exocytosis in this organism. VSG enters trypanosomes in large clathrin-coated vesicles (135 nm in diameter), which deliver their cargo to endosomes. In the lumen of cisternal endosomes, VSG is concentrated by default, because a distinct class of small clathrin-coated vesicles (50-60 nm in diameter) budding from the cisternae is depleted in VSG. TbRAB11-positive cisternal endosomes, containing VSG, fragment by an unknown process giving rise to intensely TbRAB11- as well as VSG-positive, disk-like carriers (154 nm in diameter, 34 nm in thickness), which are shown to fuse with the flagellar pocket membrane, thereby recycling VSG back to the cell surface.  相似文献   

17.
By conventional electron microscopy we observed in mitotic HeLa cells the structures termed Golgi clusters by Lucocq et al. (J. Cell Biol. 104, 865-874 (1987)) and interpreted by them as clusters of vesicular remnants of the Golgi apparatus. Golgi clusters consist of tubular and vesicular profiles about 50 nm in diameter, sometimes associated with larger 250 nm vesicles. When cultures of HeLa cells were incubated for 60 min or 120 min with medium containing high specific activity horseradish peroxidase (HRP) at 10 mg/ml we found that the membrane-bound compartments in the Golgi clusters in mitotic cells contained heavy deposits of HRP reaction product. Neither interphase nor mitotic HeLa cells contain an endogenous peroxidase activity. We concluded that Golgi clusters are an endocytic compartment and confirmed this by showing that Golgi clusters could be labeled with two other endocytic tracers--bovine serum albumin conjugated to colloidal gold and transferrin conjugated to HRP. When cultures were incubated with HRP for only 15 min most of the Golgi clusters in the mitotic cells were either unlabeled or consisted of a mixture of HRP-labeled and unlabeled profiles. Since during mitosis endocytosis is inhibited this was the expected result. When interphase HeLa cells were incubated with Brefeldin A (BFA), the Golgi apparatus disassembled and immunofluorescence microscopy showed that 1,4 beta galactosyltransferase had relocated to the endoplasmic reticulum. When cells in the presence of BFA and lacking the Golgi apparatus were allowed to endocytose HRP and then entered mitosis, typical HRP-labeled Golgi clusters were seen in the mitotic cells. It is therefore highly unlikely that these structures contain membrane derived from the Golgi cisternae that are sensitive to BFA, including in HeLa cells those containing galactosyltransferase. Finally, we found that interphase HeLa cells incubated with okadaic acid contain structures that are morphologically indistinguishable from Golgi clusters but can be labeled by endocytic tracer. Taken together, this evidence indicates that most, if not all, of the membrane-bound compartments in Golgi clusters are tubular early endosomes.  相似文献   

18.
Allen CL  Goulding D  Field MC 《The EMBO journal》2003,22(19):4991-5002
In Trypanosoma brucei, the plasma membrane is dominated by glycosylphosphatidylinositol (GPI)-anchored proteins. Endocytic activity correlates with expression levels of the clathrin heavy chain TbCLH, and additional evidence suggests that rapid endocytosis may play a role in evasion of the immune response. TbCLH is present on both endocytic vesicles and post-Golgi elements, suggesting a similar range of functions in trypanosomes to higher eukaryotes. We have assessed the role of TbCLH using RNA interference (RNAi). Suppression of TbCLH expression results in rapid lethality in the bloodstream stage, the form most active for endocytosis. The flagellar pocket, the site of both endocytosis and exocytosis, becomes massively enlarged, suggesting that membrane delivery is unaffected but removal is blocked. Endocytosis in TbCLHRNAi cells is essentially undetectable, suggesting that clathrin-mediated mechanisms are the major route for endocytosis in T.brucei and hence that GPI-anchored proteins are endocytosed by clathrin-dependent pathways in trypanosomes. In contrast, a massive internal accumulation of vesicles and significant alterations to trafficking of a lysosomal protein were observed in the procyclic stage, indicating developmental variation in clathrin function in trypanosomes.  相似文献   

19.
In Trypanosoma brucei, glycosylphosphatidylinositol phospholipase C (GPI-PLC) is a virulence factor that releases variant surface glycoprotein (VSG) from dying cells. In live cells, GPI-PLC is localised to the plasma membrane where it is concentrated on the flagellar membrane, so activity or access must be tightly regulated as very little VSG is shed. Little is known about regulation except that acylation within a short internal motif containing three cysteines is necessary for GPI-PLC to access VSG in dying cells. Here, GPI-PLC mutants have been analysed both for subcellular localisation and for the ability to release VSG from dying cells. Two sequence determinants necessary for concentration on the flagellar membrane were identified. First, all three cysteines are required for full concentration on the flagellar membrane. Mutants with two cysteines localise predominantly to the plasma membrane but lose some of their flagellar concentration, while mutants with one cysteine are mainly localised to membranes between the nucleus and flagellar pocket. Second, a proline residue close to the C-terminus, and distant from the acylated cysteines, is necessary for concentration on the flagellar membrane. The localisation of GPI-PLC to the plasma but not flagellar membrane is necessary for access to the VSG in dying cells. Cellular structures necessary for concentration on the flagellar membrane were identified by depletion of components. Disruption of the flagellar pocket collar caused loss of concentration whereas detachment of the flagellum from the cell body after disruption of the flagellar attachment zone did not. Thus, targeting to the flagellar membrane requires: a titratable level of acylation, a motif including a proline, and a functional flagellar pocket. These results provide an insight into how the segregation of flagellar membrane proteins from those present in the flagellar pocket and cell body membranes is achieved.  相似文献   

20.
The subcellular distribution of sialic acid was determined at the ultrastructural level using Limax flavus agglutinin (LFA). This lectin, which is specific for N-acetylneuraminic acid and N-glycolylneuraminic acid, was covalently conjugated to horseradish peroxidase (HRP). The conjugates (LFA-HRP) were applied to aldehyde-fixed, saponin-permeabilized 3T3 cells in pre-embedding labeling electron microscopy. Peroxidase label was detected in a patchy distribution at the cell surface, and in plasma-membrane-coated pits, endocytic vesicles (receptosomes), multivesicular bodies, and lysosomes. Smooth-surfaced tubular and vesicular structures, similar to those that participate in membrane recycling, were labeled. In the Golgi complex, more than half of the cisternae contained label--typically only one cisterna on the cis side was unlabeled. Heavily labeled structures of the trans Golgi included a reticular membranous system with coated regions--50-80 nm diameter vesicular or pit-like profiles and larger coated vacuoles. Smooth 200-300 nm vacuoles were labeled on the trans side of the Golgi stack. Similar structures have been previously shown to participate in the exocytosis of plasma membrane and secretory glycoproteins from the Golgi stacks. These findings identify those intracellular organelles that are functionally at the level of, or distal to, the sialyltransferase-containing membranes of the Golgi, and distinguish them from the pre-Golgi membranous structures. The LFA-HRP conjugate is an indicator for this functional trans domain of the cell, and should be applicable for ultrastructural double-label experiments as a cis versus trans marker of the exocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号