首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Degradation of intrinsic hepatic [(14)C]haem was analysed as (14)CO formation in living rats and in hepatic microsomal fractions prepared from these animals 16h after pulse-labelling with 5-amino[5-(14)C]laevulinic acid, a precursor that labels bridge carbons of haem in non-erythroid tissues. NADPH-catalysed peroxidation of microsomal lipids in vitro (measured as malondialdehyde) was accompanied by loss of cytochrome P-450 and microsome-associated [(14)C]haem (largely cytochrome P-450 haem), but little (14)CO formation. No additional (14)CO was formed when carbon tetrachloride and 2-allyl-2-isopropylacetamide were added to stimulate lipid peroxidation and increase loss of cytochrome P-450 [(14)C]haem. Because the latter effect persisted despite inhibition of lipid peroxidation with MnCl(2) or phenyl-t-butylnitrone(a spin-trapping agent for free radicals), it was concluded that carbon tetrachloride, as reported for 2-allyl-2-isopropylacetamide, may promote loss of cytochrome P-450 haem through a non-CO-forming mechanism independent of lipid peroxidation. By comparison with breakdown of intrinsic haem, catabolism of [(14)C]methaemalbumin by microsomal haem oxygenase in vitro produced equimolar quantities of (14)CO and bilirubin, although these catabolites reflected only 18% of the degraded [(14)C]haem. This value was increased to 100% by addition of MnCl(2), which suggests that lipid peroxidation may be involved in degradation of exogenous haem to products other than CO. Phenyl-t-butylnitrone completely blocked haem oxygenase activity, which suggests that hydroxy free radicals may represent a species of active oxygen used by this enzyme system. After administration of carbon tetrachloride or 2-allyl-2-isopropylacetamide to labelled rats, hepatic [(14)C]haem was decreased and haem oxygenase activity was unchanged; however, (14)CO excretion was either unchanged (carbon tetrachloride) or decreased (2-allyl-2-isopropylacetamide). These changes were unaffected by cycloheximide pretreatment. From the lack of parallel losses of cytochrome P-450 [(14)C]haem and (14)CO excretion, one may infer that an important fraction of hepatic [(14)C]haem in normal rats is degraded by endogenous pathways not involving CO. We conclude that carbon tetrachloride and 2-allyl-2-isopropylacetamide accelerate catabolism of cytochrome P-450 haem through mechanisms that do not yield CO as an end product, and that are insensitive to cycloheximide and independent of haem oxygenase activity.  相似文献   

2.
1. Microsomal preparations undergoing lipid peroxidation produce CO and lose haem from cytochrome P-450. 2. The amount of CO produced does not correlate with the amount of haem lost and, after pre-labelling of microsomal haem in its bridges with 5-amino[5-14C]laevulinate, the radioactivity lost from haem is not recorved as CO. 3. Similarly, when pre-labelled microsomal haem is destroyed by the action of 2-allyl-2-isopropylacetamide, no radioactivity is recovered as CO. In clear contrast, on degradation of haem by the haem oxygenase system, CO is produced in an amount equimolar to the haem lost. 4. It is concluded that (a) the CO produced during lipid peroxidation originates from a source different from haem and (b) the degradations of haem caused by lipid peroxidation and 2-allyl-2-isopropylacetamide do not involve to any significant extent evolution of the methene-bridge carbon of haem as CO.  相似文献   

3.
The porphyrinogenic drug 2-allyl-2-isopropylacetamide causes the degradation of microsomal cytochrome P-450 and inhibits the synthesis of catalase in rat liver. The inhibition of catalase synthesis follows the induction of delta-aminolaevulinate synthetase and the consequent overproduction of haem. The allylisopropylacetamide-mediated breakdown of cytochrome P-450 is a rapid event and has a reciprocal relationship to the pattern of delta-aminolaevulinate synthetase induction. Breakdown of cytochrome P-450 appears to be one of the conditions leading to the ;derepression' of delta-aminolaevulinate synthetase.  相似文献   

4.
1. 3,5-Diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine (4-ethyl-DDC) gives rise to N-ethylprotoporphyrin in the liver of rats by donating its 4-ethyl group to one of the pyrrole nitrogen atoms of haem. Four structural isomers are obtained, depending on which pyrrole nitrogen is alkylated. 2. When rats are pretreated with an inducer of cytochrome P-450, the production of N-ethylprotoporphyrin caused by 4-ethyl-DDC is greater, both in the whole animal and in hepatocytes incubated with the drug in vitro. 3. Pre-incubation of hepatocytes with 2-allyl-2-isopropylacetamide decreases the yield of N-ethylprotoporphyrin due to 4-ethyl-DDC, an effect largely reversed by adding exogenous haem. 4. The isomeric composition of N-ethylprotoporphyrin produced in vivo and in vitro depends on the cytochrome P-450 isoenzyme that predominates at the time of treatment, suggesting a role for the apo-cytochrome in directing alkylation on to one of the pyrrole nitrogens.  相似文献   

5.
The effects of inducers of cytochrome P-450 on haem biosynthesis from 5-aminolaevulinate were examined by using cultured chick-embryo hepatocytes. Cultures treated with either 2-propyl-2-isopropylacetamide or 3-methylcholanthrene contained increased amounts of cytochrome P-450 and haem. After treatment for 3 h with 5-amino[4-14C]laevulinate, the relative amounts of radioactivity accumulating as haem corresponded to the relative amounts of total cellular haem, but not to increases in the amounts of cytochrome P-450. Treatment with 5-aminolaevulinate did not alter cellular haem or cytochrome P-450 concentrations in either control or drug-treated cultures. The mechanism of the enhanced accumulation of radioactivity in haem was investigated. Although 2-propyl-2-isopropylacetamide enhanced the uptake of 5-aminolaevulinate and increased the cellular concentration of porphobilinogen 1.5-fold, these changes did not account for the increases in haem radioactivity. The inducing drugs had no effect on the rates of degradation of radioactive haem, but appeared to enhance conversion of protoporphyrin into haem. This latter effect was shown by: (1) a decreased accumulation of protoporphyrin from 5-aminolaevulinate in cells treated with inducers, and (2) complete prevention of this decrease if the iron chelator desferrioxamine was present. We conclude that inducers of cytochrome P-450 may increase haem synthesis not only by increasing activity of 5-aminolaevulinate synthase, but also by increasing conversion of protoporphyrin into haem.  相似文献   

6.
1. 19-Nor-17alpha-pregna-1,3,5(10)-trien-20-yne-3,17-diol (ethynyloestradiol) or 17beta-hydroxy-19-nor-17alpha-pregn-4-en-20-yn-3-one (norethindrone) but not 17alpha-ethyl-17beta-hydroxy-19-norandrost-4-en-3-one (norethandrolone) caused a time-dependent loss of cytochrome P-450 when incubated in vitro with rat liver microsomal fractions and NADPH-generating systems. 2. The enzyme system catalysing the norethindrone-mediated loss of cytochrome P-450 had many characteristics of the microsomal mixed-function oxidases. It required NADPH and air, and was inhibited by Co. However, it was unaffected by 1 mM-compound SKF 525A. 3. In microsomal fractions from phenobarbitone-pretreated rats the norethindrone-mediated loss of cytochrome P-450 was increased relative to controls. The norethindrone-mediated cytochrome P-450 loss was less pronounced when the animals were pretreated with 3beta-hydroxy-pregn-5-en-2-one 16alpha-carbonitrile (pregnenolone 16alpha-carbonitrile). Pretreatment with 3-methylcholanthrene rendered the animals resistant to the norethindrone effect. 4. Administration in vivo [100mg/kg, intraperitoneally] of norethindrone or ethinyl oestradiol also produced a time-dependent loss of liver cytochrome P-450. Norethandrolone had a similar, though much less-marked, effect. All three steroids lead to an induction of 5-aminolaevulinate synthase and an accumulation of porphyrins in the liver. 5. The loss of cytochrome P-450 and the accumulation of porphyrins in the liver 2 h after the administration of norethindrone to female rats was similar to that seen in males. 6. Rats pretreated with phenobarbitone and given norethindrone or ethynyloestradiol (100mg/kg, intraperitoneally) formed green pigments in their livers. These had characteristics similar to the green pigments produced in the livers of rats after the administration of 2-allyl-2-isopropylacetamide. No green pigments could be extracted from the livers of control rats or those given norethandrolone, oestradiol or progesterone.  相似文献   

7.
The induction of cytochrome P-450 in cultured chick embryo hepatocytes was studied using two structurally unrelated compounds, 2-allyl-2-isopropylacetamide and phenobarbital. Pulse-labeling of these cells showed enhanced de novo synthesis of cytochrome P-450. The cytochrome induced by 2-allyl-2-isopropylacetamide, as well as the one induced by phenobarbital, reacted immunologically with antibodies raised against the major hepatic phenobarbital-induced isozyme. Additional form of cytochrome P-450 is induced exclusively by phenobarbital. These results clearly demonstrate that these two drugs induce at least one form of cytochrome P-450 in common.  相似文献   

8.
Rat liver tryptophan pyrrolase haem is maximally depleted at 30 min after administration of a 400 mg/kg dose of 2-allyl-2-isopropylacetamide. This depletion lasts for 24 h, by which time 5-aminoleevulinate synthase activity becomes maximally enhanced. 2. though the above maximum depletion of pyrrolase haem (at 0.5h) is also produced by a 100 mg/kg dose of the porphyrogen, this does not enhance synthase activity at 24 h. It and smaller doses, however, cause a smaller but earlier enhancement of synthase activity (maximum at 2 h) and produce a similarly short-lived deplation of pyrrolase haem. 3. The depletion of pyrrolase haem and the enhancement of synthase activity by the porphyrogen are inhibited by compound SKF 525-A and phenazine methosulphate, and are potentiated by nicotinamide but not by phenobarbitone. Phenazine methosulphate and nicotinamide also exert opposite effects on hexobarbital sleeping-time. 4. 2-Allyl-2-isopropylacetamde also the depletes pyrrolase haem in vitro. It does so in liver homogenates of control rats in the presence, and in those of phenobarbitone-treated rats in the absence of added NADPH. 5. A discussion of the present results in relation to previous work with other haemoproteins suggests that, whereas cytochrome P-450 (haem) is primarily involved in the production of the active (porphyrogenic) metabolite(s) of 2-allyl-2-isopropylacetamide, the haem pool used by tryptophan pyrrolase may play an important role in the effects of this compound on haem biosynthesis.  相似文献   

9.
Isolated rat hepatocytes incubated with two suicide substrates of cytochrome P-450, 2-allyl-2-isopropylacetamide and 3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine(4-ethyl-DD C), convert exogenous mesohaem and deuterohaem into N-alkylated mesoporphyrins and deuteroporphyrins respectively. The N-alkylated mesoporphyrins can be separated by h.p.l.c. from the corresponding N-alkylated protoporphyrins originating from endogenous haem; in this way the contribution of both endogenous and exogenous pools of haem can be studied in the same experiment. N-Alkylated mesoporphyrin exhibits chiral properties, and its isomeric composition and/or amount are dependent on the particular cytochrome P-450 enzyme predominating in the cell. These findings provide additional and more direct evidence that exchangeable haem is taken up by cytochrome P-450 before being N-alkylated.  相似文献   

10.
2-allyl-2-isopropylacetamide (AIA) causes marked induction of heme synthesis in rats and other species, degrades cytochrome P-450 in the presence of NADPH and causes experimental porphyria. Using difference spectroscopy we sought evidence of an interaction between AIA and P-450 in microsomes prepared from rat liver. AIA alone caused small and variable changes in the spectral properties of liver microsomes but markedly inhibited the Type I spectral change due to hexobarbitone. Phenobarbitone exhibited behaviour qualitatively similar to AIA. It is concluded that AIA binds to cytochrome P-450 without much altering its spectral properties but in such a way as to prevent the change induced by the Type I substrate hexobarbitone.  相似文献   

11.
1. Drugs such as phenobarbitone and phenylbutazone, which increase the concentration of microsomal haem and cytochrome P-450, also increase the saturation of rat liver apo-(tryptophan pyrrolase) with its haem activator, as does the haem precursor 5-aminolaevulinate. 2. At 4h after the administration of the porphyrogens 2-allyl-2-isopropylacetamide, 3,5-diethoxycarbonyl-1,4-dihydrocollidine and griseofulvin, the total pyrrolase activity is increased whereas the haem saturation of the apoenzyme is decreased. This decreased saturation is prevented by pretreatment of the animals with the inhibitor of drug-metabolizing enzymes, SKF 525-A. 3. Pretreatment of rats with the above porphyrogens inhibits the rise in holo-(tryptophan pyrrolase) activity produced by subsequent administration of cortisol, tryptophan and 5-aminolaevulinate with two single exceptions, the possible reasons for which are discussed. 4. At 24h after the administration, in starved rats, of a single daily injection of the above porphyrogens for 1 or 2 days, the holoenzyme activity is significantly increased. 5. It is suggested that the saturation of rat liver apo-(tryptophan pyrrolase) with its haem activator can be modified by treatment known to cause destruction, inhibition of synthesis, increased utilization and enhanced synthesis of liver haem. The possible involvement of the latter phenomenon in the aetiology of mental disorders in some patients with porphyria is discussed.  相似文献   

12.
Degradation of cytochrome P-450 was studied in adult rat liver parenchymal cells in primary monolayer culture. In cells incubated in standard culture medium, the amount of cytochrome P-450 decreased at an accelerated rate relative to either the rate of degradation of total protein in the cells or the turnover of cytochrome P-450 in vivo. This change was succeeded by a spontaneous increase in the activity of haem oxygenase, an enzyme system that converts haem into bilirubin in vitro, measured in extracts from the cultured cells. This finding suggests that the rate of cytochrome P-450 breakdown may be controlled by factor(s) other than the activity of haem oxygenase. The decline in cytochrome P-450 and the subsequent increase in haem oxygenase activity was prevented by incubation of hepatocytes in medium containing an inhibitor of protein synthesis such as cycloheximide, puromycin, actinomycin D, or azaserine. The effect of cycloheximide appeared to be due to decreased breakdown of microsomal (14)C-labelled haem. By contrast, cycloheximide was without effect on the degradation of total protein, measured either in homogenates or in microsomal fractions prepared from the cultured cells. These results suggest that the conditions of cell culture stimulate selective degradation of cytochrome P-450 by a process that is inhibited by cycloheximide and hence may require protein synthesis. The findings in culture were verified in parallel studies of cytochrome P-450 degradation in vivo. After administration of bromobenzene, the degradation of the haem moiety of cytochrome P-450 was accelerated in vivo in a manner resembling that observed in cultured hepatocytes. Administration of cycloheximide to either bromobenzene-treated rats or to untreated rats decreased the degradation of the haem moiety of cytochrome P-450. However, the drug failed to affect degradation of haem not associated with cytochrome P-450, suggesting that cycloheximide is not a general inhibitor of haem oxidation in the liver. These findings confirm that the catabolism of hepatic cytochrome P-450 haem is controlled by similar cycloheximide-sensitive processes in the basal steady state in vivo, as stimulated by bromobenzene in vivo, or in hepatocytes under the conditions of cell culture. We conclude that the rate-limiting step in this process appears to require protein synthesis and precedes cleavage of the haem ring.  相似文献   

13.
14.
A reciprocal relationship exists between the cytochrome P-450 content and delta-aminolaevulinate synthetase activity in adult rats. In young rats the basal delta-aminolaevulinate synthetase activity is higher and the cytochrome P-450 content is lower compared with the adult rat liver. Administration of allylisopropylacetamide neither induces the enzyme nor causes degradation of cytochrome P-450 in the young rat liver, unlike adult rat liver. Allylisopropylacetamide fails to induce delta-aminolaevulinate synthetase in adrenalectomized-ovariectomized animals or intact animals pretreated with successive doses of the drug, in the absence of cortisol. The cortisol-mediated induction of the enzyme is sensitive to actinomycin D. Allylisopropylacetamide administration degrades microsomal haem but not nuclear haem. Haem does not counteract the decrease in cytochrome P-450 content caused by allylisopropylacetamide administration, but there is evidence for the formation of drug-resistant protein-bound haem in liver microsomal material under these conditions. Phenobarbital induces delta-aminolaevulinate synthetase under conditions when there is no breakdown of cytochrome P-450. On the basis of these results and those already published, a model is proposed for the regulation of delta-aminolaevulinate synthetase induction in rat liver.  相似文献   

15.
Effect of hexachlorobenzene on haem synthesis   总被引:3,自引:3,他引:0       下载免费PDF全文
Several drugs are known to induce the liver microsomal mixed-function oxidase system when administered in vivo or even in vitro in cell culture. A sequence of events has been suggested in which the drug is visualized to induce delta-aminolaevulinate synthetase, the first and rate-limiting enzyme of the haem-biosynthetic pathway, which is followed by enhanced haem synthesis and cytochrome P-450 content, facilitating the increase in the drug-metabolizing activity of the liver microsomal fraction. The present studies show that the fungicide hexachlorobenzene, when administered to female rats, can lead to enhanced amounts and rate of synthesis of cytochrome P-450 under conditions when the rate of total haem synthesis has not appreciably altered. The subsequent increase in the rate of total haem synthesis as well as the initial increase in amounts of cytochrome P-450 are brought about under conditions when delta-aminolaevulinate synthetase activity remains constant. However, manifestation of porphyria due to prolonged drug administration is accompanied by a twofold increase in delta-aminolaevulinate synthetase activity. The increase in enzyme activity appears to be due to a decreased degradation rate of the enzyme.  相似文献   

16.
The potent porphyrogen allylisopropylacetamide and related compounds decrease hepatic concentrations of cytochrome P-450. This decrease occurs particularly in phenobarbital-induced cytochrome P-450 and is caused by suicidal breakdown of the haem of cytochrome P-450. Quantitative rocket immunoelectrophoresis showed that the protein moiety of the major phenobarbital-inducible form of hepatic cytochrome P-450 was not diminished up to 1 h, but was markedly decreased (to 43% of that of the phenobarbital-treated control) at 20 h after allylisopropylacetamide treatment. In contrast, the concentration of total cytochrome P-450, measured spectrophotometrically, decreased to 30-40% of the control at both 1 and 20 h after allylisopropylacetamide. Cytochrome P-450-dependent demethylations of ethylmorphine and benzphetamine decreased to a similar extent. When liver homogenates from rats treated with allylisopropylacetamide 1 h before being killed were incubated with haem, functional holocytochrome P-450 could be reconstituted from the apoprotein. Incubation with haem increased spectrophotometrically measurable cytochrome P-450 to 69%, ethylmorphine demethylase to 64% and benzphetamine demethylase to 93% of the activities in rats treated with phenobarbital alone. At 20 h after allylisopropylacetamide treatment, however, little or no reconstitution of cytochrome P-450 occurred after incubation with haem. When liver homogenates were incubated with cobalt and protoporphyrin, and microsomal proteins were then subjected to polyacrylamide-gel electrophoresis, cobalt-protoporphyrin was found specifically associated with proteins of Mr 50 000-53 000. When homogenates from rats given allylisopropylacetamide for 1 h or 20 h were compared, it was found that the extent of this association was higher in livers from the rats containing more apocytochrome P-450, suggesting that cobalt-protoporphyrin had associated with the apocytochrome. The data provide insight into the association of haem with the protein moiety of cytochrome P-450 and factors affecting breakdown of this protein.  相似文献   

17.
Cobalt ions (Co2+) are potent inducers of haem oxygenase in liver and inhibit microsomal drug oxidation probably by depleting microsomal haem and cytochrome P-450. Complexing of Co2+ ions with cysteine or glutathione (GSH) blocked ability of the former to induce haem oxygenase. When hepatic GSH content was depleted by treatment of animals with diethyl maleate, the inducing effect of Co2+ on haem oxygenase was significantly augmented. Other metal ions such as Cr2+, Mn2+, Fe2+, Fe3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ were also capable of inducing haem oxygenase and depleting microsomal haem and cytochrome P-450. None of these metal ions had a stimulatory effect on hepatic haem oxidation activity in vitro. It is suggested that the inducing action of Co2+ and other metal ions on microsomal haem oxygenase involves either the covalent binding of the metal ions to some cellular component concerned directly with regulating haem oxygenase or non-specific complex-formation by the metal ions, which depletes some regulatory system in liver cells of an essential component involved in controlling synthesis or activity of the enzyme.  相似文献   

18.
Phenylhydrazine was found to be a potent inducer of microsomal haem oxygenase activity in rat liver and kidney, but not in spleen. The phenylhydrazine-mediated increase in haem oxygenase activity was time-dependent. Maximum activity was attained 12h after treatment in the liver, and 24h after treatment in the kidney. The increases in the activity of haem oxygenase in the liver and the kidney could be inhibited by cycloheximide. Furthermore, the increases could not be elicited by the treatment of microsomal preparations in vitro with phenylhydrazine. In consonance with the increased haem oxygenase activity, a marked increase (16-fold) was observed in the serum total bilirubin concentration in phenylhydrazine-treated rats. The mechanism of haem degradation promoted by phenylhydrazine in vivo appears to differ from that in vitro; only in the former case is bilirubin formed as the end-product of haem degradation. When rats were given zinc-protoporphyrin (40 mumol/kg) 12h before and after phenylhydrazine treatment, the phenylhydrazine-mediated increases in haem oxygenase activity in the liver and the kidney were effectively blocked. Treatment of rats in vivo with the metalloporphyrin also inhibited the activity of splenic haem oxygenase, and promoted a major decrease in the serum bilirubin levels. In phenylhydrazine-treated animals, the microsomal content of cytochrome P-450 was significantly decreased in the absence of a decrease in the microsomal haem concentration. The decrease in cytochrome P-450 content was accompanied by an increased absorption in the 420nm region of the reduced CO-difference spectrum, suggesting the conversion of the cytochrome to an inactive form. The marked depletion of cellular glutathione levels suggests that this conversion may be related to the action of active intermediates and free radicals formed in the course of the interaction of phenylhydrazine with the haem moiety of cytochrome P-450.  相似文献   

19.
The in vivo turnover rates of liver microsomal epoxide hydrolase and both the heme and apoprotein moieties of cytochromes P-450a, P-450b + P-450e, and P-450c have been determined by following the decay in specific radioactivity from 2 to 96 h after simultaneous injections of NaH14CO3 and 3H-labeled delta-aminolevulinic acid to Aroclor 1254-treated rats. Total liver microsomal protein was characterized by an apparent biphasic exponential decay in specific radioactivity, with half-lives of 5-9 and 82 h for the fast- and slow-phase components, respectively. Most (approximately 90%) of the rapidly turning over microsomal protein fraction was immunologically distinct from membrane-associated serum protein, and thus appeared to represent integral membrane proteins. The existence of two distinct populations of cytochrome P-450a was suggested by the apparent biphasic turnover of both the heme and apoprotein moieties of the holoenzyme. The half-lives of the apoprotein were estimated to be 12 and 52 h for the fast- and slow-phase components, respectively, and 7 and 34 h for the heme moiety. The turnover of cytochromes P-450b + P-450e was identical to that of cytochrome P-450c, with half-lives of 37 and 28 h for the apoprotein and heme moieties, respectively. In all cases, the shorter half-lives of the heme component compared to the protein component were statistically significant. In contrast to the cytochrome P-450 isozymes, epoxide hydrolase (t1/2 = 132 h) turned over slower than the "average" microsomal protein (t1/2 = 82 h). The differential rates of degradation of these major integral membrane proteins during both the rapid and slow phases of total microsomal protein turnover argue against the concepts of unit membrane degradation and unidirectional membrane flow of liver endoplasmic reticulum.  相似文献   

20.
Several naphthoquinones, except 2-hydroxy-1,4-naphthoquinone, were found to inhibit microsomal cytochrome P-450-linked monooxygenase activities in rabbit liver and human placenta. In particular, 5-hydroxy-1,4-naphthoquinone inhibited placental estrogen biosynthesis more effectively than it did hepatic drug oxidation reactions. There was little contribution by superoxide radicals to these enzyme inhibitions by naphthoquinones. Spectrophotometric studies revealed that naphthoquinones bind to the cytochrome P-450 component of the monooxygenase complex in both microsomal systems, suggesting that the inhibition is caused by direct interaction of these compounds with the heme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号