首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
目的应用鼠胚质控中的小鼠胚胎体外培养模型,探讨两种胚胎培养方式(四孔皿与微滴法)在单胚观察时间上的差异以及对2-细胞鼠胚体外发育潜能的影响。方法取6-8周龄的昆明白雌性小鼠。采用HMG10IU促排卵,48 h后注射HCG 10IU促卵泡成熟,取形态正常的2-细胞鼠胚。每5-10个胚胎培养在含500μL培养基的四孔皿中(A组),或单个胚胎接种在含50μL的培养微滴中(B组)。培养后,每隔24 h在倒置显微镜下观察一次,计算单胚观察时间,并检测24 h时的≥4细胞胚形成率、48 h的融合胚形成率7、2 h的囊胚与扩张囊胚形成率、96 h囊胚孵化率。结果两种培养方式于同一试验条件下分别试验5次,A组培养83个胚胎,B组培养69个2-细胞鼠胚。在每一个观察点上,微滴培养的单胚观察时间远超过四孔皿培养(P〈0.001)。但两组各时间点的胚胎发育率相似,无显著差异(P〉0.05)。结论尽管微滴单胚培养方式的胚胎暴露培养箱外时间长,但与四孔皿多胚培养方式比较,两者间2-细胞鼠胚的体外发育潜能相似。  相似文献   

2.
This study investigated the embryotrophic effects of ethylenediaminetetraacetic acid (EDTA) and hemoglobin (Hb) on porcine preimplantation embryo development. Porcine embryos produced by in vitro maturation/fertilization were cultured for 6 days in modified North Carolina State University-23 medium (mNCSU-23) supplemented with EDTA and/or Hb. In Exp. 1, culturing porcine zygotes with 100 microM EDTA significantly increased cleavage frequencies (85.3%) at 48 h post insemination and the number of inner cell mass (ICM) (9.6+/-5.5) compared to the control (7.0+/-2.8). However, 100 microM EDTA did not improve blastocyst formation compared to 0, 1 or 10 microM EDTA. In Exp. 2, in vitro fertilized oocytes were cultured with 0, 1 or 10 microg/ml Hb. Culturing with Hb did not promote porcine embryo development, but significantly increased the cell numbers of blastocysts in 1 microg/ml Hb compared to 0 or 10 microg/ml Hb. In Exp. 3, culturing embryos with 100 microM EDTA+1 microg/ml Hb significantly improved frequencies of cleavage, blastocyst formation, and total cell numbers in blastocysts compared to the control. Moreover, 100 microM EDTA, 1 microg/ml Hb and their combination reduced reactive oxygen species (ROS) accumulation and decreased the incidence of apoptosis. In conclusion, the present study clearly demonstrated that the combining treatment of EDTA and Hb improved IVF porcine embryo development.  相似文献   

3.
Various factors, such as quality of the oocyte, oxygen tension, embryo density, and kind of energy substrate during in vitro production of embryos may affect the rate of preimplantation embryo development. In the present study we used 12553 bovine oocytes aspirated from slaughterhouse ovaries to evaluate various culture conditions that would increase in vitro production of advanced stages of preimplantation embryos. The morphological quality of the oocyte based on the compactness and number of layers of cumulus cells had significant positive effects on the rates of in vitro maturation, fertilization and development to the morula and blastocyst stages. None of the corona-enclosed or nude oocytes progressed beyond the 8- to 16-cell stage. The level of oxygen (5 or 20%) did not affect the proportion of one-cell embryos undergoing cleavage or progressing to morula and blastocyst stages. The rate of development of one-cell embryos originating from inferior quality oocytes was significantly improved when cultured in groups of 40 instead of 20 embryos per 0.5 mL medium. In the presence of cumulus cells, glucose had beneficial effects on in vitro maturation and subsequent development of IVM-IVF zygotes. The presence of serum improved the rate of in vitro development of one-cell embryos. Minimum Essential Medium supplemented with energy substrates according to the findings of metabolic studies was less effective in supporting in vitro maturation and subsequent development than TCM-199. In conclusion, morphological grading of immature oocytes is an appropriate selection criterion for their developmental ability. Embryo yields from low quality oocytes can be increased by culturing them in large groups. Serum is not essential for in vitro generation of embryos but its addition improves rates of success.  相似文献   

4.
Effects of different activation methods on the cleavage and in vitro development of bovine somatic cloned embryos constructed by intracytoplasmic nuclear injection were compared. The results show that the cleavage and in vitro development rate were not different significantly for constructed embryos cultured in 6-DMAP comparing with those in 6-DMAP + cytochalasin B (CCB) after activation with Ionomycin. Culture duration (3 to 4 h) in 6-DMAP or 6-DMAP + CCB had no significant effects on the cleavage and in vitro development ability of reconstructed embryos. CCB addition in the activation medium was benefit to the development of constructed embryos, although the effect wasn't significant. Within 1 to 4 h, the longer interval duration of nuclear injection and reconstructed embryo activation was, the higher cleavage and the blastocyst development rate of reconstructed embryos were.  相似文献   

5.
哺乳动物体细胞核移植在家畜品种改良、濒危珍稀动物保护以及生物学、医学等基础科学研究和应用中越来越显示出其重要的作用。自Wilmut等首次用成年动物体细胞作供体,获得第一只成年体细胞克隆绵羊“Dolly”以来,世界各国科学家进行了大量深入的研究,已在小鼠、牛、猪、山羊等家畜上获得了成功。而且,体细胞核移植技  相似文献   

6.
In Experiment 1, development of zona pellucida-intact (ZPI) morulae was measured every 24 hours for 120 hours after encapsulation in 2% sodium alginate (ALG) or 0.1% poly-L-lysine (PLL). Encapsulation significantly reduced development to hatched blastocysts at 48 and 72 hours. Developmental stages and diameters of ZPI and zona pellucida-free (ZPF) unencapsulated and encapsulated morulae were measured every 24 hours for 72 hours in Exeriment 2. At 72 hours, the percentage of ZPI embryos developing to expanded blastocysts, their diameters and their nuclear counts were not different from each other or from ZPF embryos. In Experiment 3, ZPI morulae encapsulated in ALG or PLL were transferred into recipients. Five of six recipients that received unencapsulated embryos (n=71) delivered 16 live pups. None of the recipients of encapsulated embryos delivered offspring; therefore, a final experiment was performed to examine fetal development on Day 10 of gestation. The percentage of pregnant recipients was similar for all 3 treatments: unencapsulated (71.4%), ALG (87.5%) and PLL (87.5%). However, the presence of viable fetuses was higher for unencapsulated embryos (42.1%) than for ALG (17%) and PLL (14.6%) embryos. These results suggest that encapsulation did not detrimentally affect embryonic size or cellular development in vitro; however, mortality occurred in vivo due to an asynchronous condition between the uterine environment and the embryos.  相似文献   

7.
Mouse preimplantation embryo development is characterized by a switch from a dependence on the tricarboxylic acid cycle pre-compaction to a metabolism based on glycolysis post-compaction. In view of this, the role of glucose in embryo culture medium has come under increased analysis and has lead to improved development of outbred mouse embryos in glucose free medium. Another type of embryo that has proven difficult to culture is the parthenogenetic (PN) mouse embryo. With this in mind we have investigated the effect of glucose deprivation on PN embryo development in vitro. Haploid and diploid PN embryos were grown in medium M16 with or without glucose (M16-G) and development, glycolytic rate, and methionine incorporation rates assessed. Haploid PN and normal embryo development to the blastocyst stage did not differ in either M16 or M16-G. In contrast, although diploid PN embryos formed blastocysts in M16 (28.3%), they had difficulty in undergoing the morula/blastocyst transition in M16-G (7.6%). There was no significant difference in mean cell numbers of haploid PN, diploid PN and normal embryos cultured in M16 and M16-G at the morula and blastocyst stage. Transfer of diploid PN embryos from M16-G to M16 at the four- to eight-cell stage dramatically increased blastocyst development. At the morula stage diploid PN embryos grown in M16-G exhibited a higher glucose metabolism and protein synthesis compared to those grown in M16 and to haploid PN embryos. Difficulties of diploid PN embryos in undergoing the morula/blastocyst transition in absence of glucose infer the existence of a link between the maternally inherited components and the preimplantation embryos dependence on glucose. © 1996 Wiley-Liss, Inc.  相似文献   

8.
This study was conducted to evaluate the efficiency of potassium simplex optimization medium with amino acids (KSOMaa) as a basal culture medium for caprine intraspecies somatic cell nuclear transfer (SCNT) and caprine-bovine interspecies somatic cell nuclear transfer (iSCNT) embryos. The effect of increased glucose as an energy substrate for late stage development of cloned caprine embryos in vitro was also evaluated. Enucleated caprine and bovine in vitro matured oocytes at metaphase II were reconstructed with caprine ear skin fibroblast cells for the SCNT and iSCNT studies. The cloned caprine and parthenogenetic embryos were cultured in either KSOMaa with 0.2 mM glucose for 8 days (Treatment 1) or KSOMaa for 2 days followed by KSOMaa with additional glucose at a final concentration of 2.78 mM for the last 6 days (Treatment 2). There were no significant differences in the cleavage rates of SCNT (80.7%) and iSCNT (78.0%) embryos cultured in KSOMaa medium. Both Treatment 1 and Treatment 2 could support in vitro development of SCNT and iSCNT embryos to the blastocyst stage. However, the blastocyst development rate of SCNT embryos was significantly higher (P < 0.05) in Treatment 2 compared to Treatment 1. Increasing glucose for later stage embryo development (8-cell stage onwards) during in vitro culture (IVC) in Treatment 2 also improved both caprine SCNT and iSCNT embryo development to the hatched blastocyst stage. In conclusion, this study shows that cloned caprine embryos derived from SCNT and iSCNT could develop to the blastocyst stage in KSOMaa medium supplemented with additional glucose (2.78 mM, final concentration) and this medium also supported hatching of caprine cloned blastocysts.  相似文献   

9.
The nuclear lamina is a complex meshwork of nuclear lamin filaments that lies on the interface of the nuclear envelope and chromatin and is important for cell maintenance, nucleoskeleton support, chromatin remodeling, and protein recruitment to the inner nucleolus. Protein and mRNA patterns for the major nuclear lamins were investigated in bovine in vitro fertilized (IVF) and nuclear transfer embryos. Expression of lamins A/C and B were examined in IVF bovine germinal vesicle (GV) oocytes, metaphase II oocytes, zygotes, 2-cell, 8-cell, 16-32-cell embryos, morulae, and blastocysts (n = 10). Lamin A/C was detected in 9/10 immature oocytes, 10/10 zygotes, 8/10 2-cell embryos, 4/10 morulae, 10/10 blastocysts but absent during the maternal embryonic transition. Lamin B was ubiquitously expressed during IVF preimplantation development but was only detected in 4/10 GV oocytes. Messenger RNA expression confirms that the major lamins, A/C and B1 are expressed throughout preimplantation development and transcribed by the embryo proper. Lamin A/C and B expression were observed (15 min, 30 min, 60 min, 120 min) following somatic cell nuclear transfer using adult fibroblasts and at the 2-cell, 8-cell, 16-32-cell, morula and blastocyst stage (n = 5). Altered expression levels and localization of nuclear lamins A/C and B was determined in nuclear transfer embryos during the first 2 hr post fusion, coincidental with only partial nuclear envelope breakdown as well as during the initial cleavage divisions, but was restored by the morula stage. This mechanical and molecular disruption of the nuclear lamina provides key evidence for incomplete nuclear remodeling and reprogramming following somatic cell nuclear transfer.  相似文献   

10.
Cloning by somatic cell nuclear transfer is critically dependent upon early events that occur immediately after nuclear transfer, and possibly additional events that occur in the cleaving embryo. Embryo culture conditions have not been optimized for cloned embryos, and the effects of culture conditions on these early events and the successful initiation of clonal development have not been examined. To evaluate the possible effect of culture conditions on early cloned embryo development, we have compared a number of different culture media, either singly or in sequential combinations, for their ability to support preimplantation development of clones produced using cumulus cell nuclei. We find that glucose is beneficial during the 1-cell stage when CZB medium is employed. We also find that potassium simplex optimized medium (KSOM), which is optimized to support efficient early cleavage divisions in mouse embryos, does not support development during the 1-cell or 2-cell stages in the cloned embryos as well as other media. Glucose-supplemented CZB medium (CZB-G) supports initial development to the 2-cell stage very well, but does not support later cleavage stages as well as Whittten medium or KSOM. Culturing cloned embryos either entirely in Whitten medium or initially in Whittens medium and then changing to KSOM at the late 4-cell/early 8-cell stage produces consistent production of blastocysts at a greater frequency than using CZB-G medium alone. The combination of Whitten medium followed by KSOM resulted in an increased number of cells per blastocyst. Because normal embryos do not require glucose during the early cleavage stages and develop efficiently in all of the media employed, these results reveal unusual culture medium requirements that are indicative of altered physiology and metabolism in the cloned embryos. The relevance of this to understanding the kinetics and mechanisms of nuclear reprogramming and to the eventual improvement of the overall success in cloning is discussed.  相似文献   

11.
To develop an in vitro culture system for bovine oocytes and early embryos, we examined the effects of co-culture of in vitro matured and in vitro fertilized embryos with trophoblastic vesicles and cumulus cells. We also studied the effects of culture medium components and oxygen gas pressure by modifying TCM-199 medium and using a gas-tight chamber. We found that co-culture with trophoblastic vesicles or cumulus cells promoted early embryos to develop beyond the eight-cell block; 17 to 19% of the initial oocytes developed to the morula stage. The effects of removing glucose and other energy sources from the medium, adding EDTA to the medium, reducing the concentration of serum, and reducing the oxygen gas pressure on the development of embryos were also examined. These modifications during the initial phase of co-culture greatly increased the rate of embryo development to the morula (36 to 38% of oocytes developed to morulae) and blastocyst stages.  相似文献   

12.
Three experiments were conducted in which 2-cell bovine embryos were prepared from oocytes, obtained from abattoir ovaries, by in-vitro maturation for 22 to 24 hours, followed by exposure to spermatozoa for 8 hours and culture for 40 hours within the cumulus. The cumulus cells were then removed, and the cleaved embryos were cultured for a further 120 hours or longer, in the presence or absence of glucose, pyruvate and lactate. Very few embryos developed in the complete absence of energy substrates. Lactate and pyruvate, alone or combined, supported development to the 8-cell stage, but pyruvate was required to support development to the morula stage (Experiment 1). When present throughout culture or when added at 48 or 96 hours postinsemination, 5.56 mM glucose was detrimental to development (Experiments 1 and 2). However, when added at 120 hours postinsemination, 5.56 mM glucose improved development to the blastocyst and expanded blastocyst stages, compared with no glucose or 11.12 mM glucose (Experiment 3).  相似文献   

13.
The objective of this study was to develop a successful system for culturing one-cell ovine embryos through several cleavage divisions. One hundred and four one-cell embryos were collected from synchronized, FSH-treated ewes 48 hr after the onset of estrus and randomly placed in one of four culture treatments. The effect of glucose supplementation and reduced oxygen tension (20% vs. 5%) on embryo development was studied. Embryo development was quantitated by a cleavage index based on the number of completed cell divisions. The number of embryos completing at least two cell divisions when cultured in Brinster's Pyruvate Medium (BPM) was 7 26 and 9 26 , under 5% CO(2) in air and 90% N(2), 5% CO(2), 5% O(2), respectively, while 22 26 and 20 26 embryos divided when cultured in BPM supplemented with 0.1% glucose (BPM-G) under similar atmospheres. Mean cleavage indices for embryos cultured in BPM were 1.2 and 1.6 under 5% CO(2) in air and 90% N(2), 5% CO(2), 5% O(2), respectively, while embryos cultured in BPM-G had mean cleavage indices of 4.6 and 4.0, respectively. Results of this study indicate that one-cell ovine embryos can be successfully cultured through several cleavage divisions. Glucose supplementation was beneficial for one-cell ovine embryo development. Reducing the oxygen tension from 20 to 5% had no effect on embryo development, and there was no media x gaseous atmosphere interaction.  相似文献   

14.
The failure of hamster 2-cell embryos to develop in vitro (2-cell block) was examined with experiments in which concentrations of glucose and phosphate in the culture medium were varied. Embryos were cultured in a protein-free modified Tyrode's solution that normally contains 5.0 mM glucose and 0.35 mM sodium dihydrogen phosphate. In the presence of 0.35 mM phosphate but without glucose, 23% of 2-cell embryos reached the 4-cell stage or further after culture for 1 day and 27% after 2 days. Glucose inhibited embryo development even at 0.1 mM (4% development to greater than or equal to 4-cells after culture for 2 days); there was no dose-related inhibition above this glucose concentration. In a second experiment, phosphate levels were varied in the absence of glucose. Phosphate was highly inhibitory to development, with 97% of 2-cell embryos reaching the 4-cell stage or further after culture for 1 day in the absence of phosphate compared to 9-21% in the presence of 0.1-1.05 mM phosphate. After culture for 2 days, 26% of embryos reached the 8-cell stage or further when phosphate was absent compared to 0% development to 8-cells with 0.1 mM phosphate or higher. In a factorial experiment, phosphate blocked development when glucose was present or absent, whereas glucose did not block embryo development in the absence of phosphate. However, 2-deoxyglucose (a non-metabolizable analogue of glucose) inhibited embryo development in the absence of phosphate. These data show that the in vitro block to development of hamster 2-cell embryos is caused at least in part by glucose and/or phosphate. Deletion of these compounds from the culture medium eliminates the 2-cell block to development in virtually all embryos, and approximately 25-75% of embryos develop to the 8-cell or morula stages in vitro. The observations provide a possible explanation for the 2-cell and 4-cell blocks that occur in conventional culture media: stimulation of glycolysis by glucose and/or phosphate may result in inefficient adenosine triphosphate (ATP) production. The data indicate marked dissimilarities in the regulation of in vitro development of early cleavage stage hamster embryos compared with embryos of inbred mice, since the latter have an inactive glycolytic pathway prior to the 8-cell stage of development and will grow from 1-cell to blastocyst with both phosphate and glucose in the culture medium.  相似文献   

15.
There are many factors affecting the efficiency of nuclear transfer technology. Some are evaluated here using our novel approach by enucleating oocytes at 20–22 hr after in vitro maturation (IVM), culturing the enucleated oocytes (cytoplasts) for 8–10 hr or 18–20 hr to gain activation competence and then conducting nuclear transfer. In the first experiment, we demonstrated that cumulus cell (CC) monolayer can support some cloned embryos to develop into morulae or blastocysts. Co-culture with CC and bovine oviduct epithelial cell (BOEC) monolayers resulted in no differences (P 0.05) in supporting the development of cloned embryos (Experiment 2). When in vitro matured oocytes were enucleated at 22 hr after IVM followed by nuclear transfer 18–20 hr later, cleavage and morula or blastocyst development of the cloned embryos were similar to those resulting from the enucleated oocytes which had been matured in vivo (Experiment 3). Frozen embryos as nuclear donor cells worked equally well as fresh embryos for cloning in embryo development which was superior to IVF embryos (Experiment 4). However, fresh embryos resulted in a higher proportion (P < 0.05) of blastomere recovery than did frozen or IVF ambryos. Finally, embryo transfer of cloned embryos from our procedure produced a viable calf, demonstrating the commercial value of this novel approach of the technology. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Therapeutic cloning,which is based on human somatic cell nuclear transfer,is one of our major research objectives.Though inter-species nuclear transfer has been introduced to construct human somatic cell cloned embryos,the effects of type,passage,and preparation method of donor cells on embryo development remain unclear.In our experiment,cloned embryos were reconstructed with different passage and preparation methods of ossocartilaginous cell,skin fibroblast,and cumulus cells.The cumulus cell embryos showed significantly higher development rates than the other two (P<0.05).The development rate of embryos reconstructed with skin fibroblasts of different passage number and somatic cells of different chilling durations showed no significant difference.Also,fluorescence in situ hybridization (FISH)was conducted to detect nuclear derivation of the embryos.The result showed that the nuclei of the inter-species cloned embryo cells came from human.We conclude that (1)cloned embryos can be constructed through human-rabbit interspecies nuclear transfer;(2)different kinds of somatic cells result in different efficiency of nuclear transfer,while in vitro passage of the donor does not influence embryo development;(3)refrigeration is a convenient and efficient donor cell preparation method.Finally,it is feasible to detect DNA gcnotype through FISH.  相似文献   

17.
18.
人-兔异种核移植构建克隆胚的实验研究   总被引:1,自引:0,他引:1  
“治疗性克隆”是人类最关注的课题之一,而人体细胞核移植是治疗性克隆的基础和前提。异种核移植的方法虽已被引入人体细胞克隆胚的构建,但供体细胞的类型、培养代数及准备方法与其效率之间的关系尚有待探讨。本实验以不同培养代数和不同准备方法的人卵丘细胞、皮肤成纤维细胞和软骨细胞为供体构建了克隆胚,对其发育情况的比较表明,以卵丘细胞为供体时重构胚的体外发育率高于其余二者,差异显著(P〈0.05);不同培养代数的成纤维细胞克隆胚和不同冷藏天数供体细胞克隆胚体外发育率无明显差异。此外,本实验还尝试用荧光原位杂交法检测所构建的异种克隆胚核遗传物质的来源,结果显示来自人体细胞。本研究表明,人一兔异种核移植构建克隆胚切实可行;体细胞的类型与核移植效率相关;供体细胞的体外培养传代对克隆胚的发育并无影响;而冷藏是一种简便有效的供体细胞准备方法;此外,用FISH方法对重构胚进行核遗传物质的鉴定切实可行。  相似文献   

19.
Activation of Akt/Protein Kinase B (PKB) by phosphatidylinositol-3-kinase (PI3K) controls several cellular functions largely studied in mammalian cells, including preimplantation embryos. We previously showed that early mouse embryos inherit active Akt from oocytes and that the intracellular localization of this enzyme at the two-cell stage depends on the T-cell leukemia/lymphoma 1 oncogenic protein, Tcl1. We have now investigated whether Akt isoforms, namely Akt1, Akt2 and Akt3, exert a specific role in blastomere proliferation during preimplantation embryo development. We show that, in contrast to other Akt family members, Akt2 enters male and female pronuclei of mouse preimplantation embryos at the late one-cell stage and thereafter maintains a nuclear localization during later embryo cleavage stages. Depleting one-cell embryos of single Akt family members by microinjecting Akt isoform-specific antibodies into wild-type zygotes, we observed that: (a) Akt2 is necessary for normal embryo progression through cleavage stages; and (b) the specific nuclear targeting of Akt2 in two-cell embryos depends on Tcl1. Our results indicate that preimplantation mouse embryos have a peculiar regulation of blastomere proliferation based on the activity of the Akt/PKB family member Akt2, which is mediated by the oncogenic protein Tcl1. Both Akt2 and Tcl1 are essential for early blastomere proliferation and embryo development.  相似文献   

20.
Kato Y  Tsunoda Y 《Theriogenology》1994,41(6):1315-1322
Different numbers of CD-1 mouse zygotes(1, 5, 10, 20, 40 and 60) were cultured in 10 mul M16 medium, in M16 medium+EDTA, in M16 dedium+SOD+thioredoxin, and in CZB medium, respectively. When the zygotes, regardless of the number, were cultured with M16, no blastocysts could be obtained. The suitable ratio of embryos to 1 mul of M16 medium+EDTA or M16 medium+SOD+thioredoxin was 1:1 or 2:1. Medium volume from 1 to 10 mul did not affect blastocyst development when the embryo density was 1:1. However, blastocysts obtained from zygotes cultured singly had fewer cell numbers and showed inferior development to live fetuses after transfer to recipients. When CZB medium was used, suitable embryo density was not clear. The ratio of embryos to volume of culture medium was shown to be an important factor for in vitro culture of mouse zygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号