首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high throughput assay (the DRAG test) is described, which could be a useful tool for the detection of repairable DNA adducts, and which is based on the inhibition of the growth of DNA repair-deficient Chinese hamster ovary (CHO) cells. The cytotoxicity of a test substance towards DNA repair-deficient CHO cell lines is compared with the corresponding cytotoxicity in the parental wild-type CHO cell line (AA8). A more pronounced toxicity toward a DNA repair-deficient cell line is interpreted as being the consequence of its inability to repair the DNA adduct induced by the compound. (+)-7beta,8alpha-Dihydroxy-9alpha,10alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, camptothecin, ethyl methanesulphonate and mitomycin C were used as reference substances, and the overall results indicate that the DRAG test could be useful in the screening of compounds for the production of repairable DNA adducts. The main advantages with the DRAG test are that it provides a relevant endpoint, it is rapid, it requires small amounts of the test item, and it permits a large number of compounds to be tested.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) are associated with occupational exposure and urban atmospheric pollution. Determination of the genotoxic properties of these compounds is thus of outmost importance. For this purpose a variety of cellular models have been widely used. Reliable results can however only be obtained with models reflecting the specific sensitivity of different organs towards PAHs. In this work, we compared the response to benzo[a]pyrene in cell lines from human lungs (A549) and bladder (T24); two important target organs for PAHs-induced cancer. Human hepatocytes (HepG2) were used as a reference, although liver is not a concern for PAHs carcinogenesis. Adducts arising from the ultimate diol-epoxide metabolite of B[a]P, BPDE, were found to be produced in a dose-dependent manner in HepG2. BPDE DNA adducts were not detected in T24 and in A549 their formation was found to be most efficient at the lowest concentration studied (0.2 µM). These results are probably explained by differences in induction and activity of phase I metabolization enzymes, as well as by proteins eliminating the B[a]P epoxide in A549. In addition to BPDE adducts, oxidative DNA damage, namely strand breaks and oxidized purines were measured and found to be produced only in minute amounts in all three cell lines. In summary, our results emphasize the large differences in the response of cells originating from different organs. Our data also point out the importance of carefully selecting the doses used in in vitro toxicological experiments. The example of A549 shows that working at high doses may lead to an underestimation of the risk. Finally, the choice of method for evaluating genotoxicity appears to be of crucial importance. The comet assay does not seem to be the best method for a compound like B[a]P which induces stable adducts causing limited oxidative damage.  相似文献   

3.
We evaluated the genotoxicity of the food-flavouring agent estragole in V79 cells using the sister chromatid exchange (SCE) assay and the alkaline comet assay. Unexpectedly, we observed an increase in SCE without an exogenous biotransformation system (S9) and a decrease in its presence. Positive results were also observed in the alkaline comet assay without S9, indicating DNA strand breakage. To ascertain repair of damage, we performed the comet assay in V79 cells after two hours of recovery, and observed a reduction of the genotoxic response. Estragole did not produce strand breaks in plasmid DNA in vitro. We then evaluated the formation of DNA adducts in V79 cells by use of the (32)P-postlabelling assay and detected a dose-dependent formation of DNA adducts, which may be responsible for its genotoxicity. We then assayed estragole in the comet assay with two CHO cell lines, a parental AA8 cell line, and an XRCC1-deficient cell line, EM9. Results confirmed the genotoxicity of estragole without biotransformation in both cell lines, although the genotoxicity in EM9 cells compared with that in AA8 cells was not significantly different, suggesting that the XRCC1 protein is not involved in the repair of estragole-induced lesions. Estragole induces apoptosis, but only with high doses (2000μM), and after long treatment periods (24h). Overall, our results suggest that estragole, besides being metabolized to genotoxic metabolites, is a weak direct-acting genotoxin that forms DNA adducts.  相似文献   

4.
Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (+/-)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the (32)P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.  相似文献   

5.
The DNA repair host-mediated assay was further calibrated by testing 7 chemotherapeutic agents known to possess carcinogenic activity, namely bleomycin (BLM), cis-diamminedichloroplatinum-II (cis-Pt), cyclophosphamide (CP), diethylstilboestrol (DES), isonicotinic acid hydrazide (isoniazid, INH), natulan (NAT) and mitomycin C (MMC). Differential survival of wild-type and uvrB/recA E. coli strains served as a measure of genotoxic activity. In in vitro assays, BLM, cis-Pt and MMC exhibited high genotoxic activity. The other 4 compounds had no measurable effect on the survival of the two strains, either with or without mouse liver preparations. In the host-mediated assays BLM, cis-Pt, MMC and also NAT induced strong killing of the DNA repair-deficient bacteria recovered from liver, spleen, lungs, kidneys and the blood of treated mice compared to the wild-type strain. The results are not indicative of large organ-specific differences in genotoxically active amounts of the drugs immediately after their application to the host animals. CP, INH and DES did not show geneotix activity in these assays even at very high exposure levels. To compare the genetic endpoint measured in the DNA repair assays, i.e. induction of repairable DNA damage, with the induction of gene mutations, the ability of the 7 drugs to induce valine-resistant (VALr) mutants in E. coli was measured in host-mediated assays under identical treatment conditions. INH showed considerable mutagenic activity in E. coli cells recovered from liver and spleen, while BLM and MMC induced a 3-4-fold increase in VALr mutants above spontaneous levels. The other compounds showed no mutagenic activity under these in vivo conditions. From these results it can be concluded that the type of primary DNA lesions produced by these chemotherapeutic agents (cross-links by MMC and cis-Pt, and strand breaks by BLM and possibly by NAT; base alkylation by INH) appears to determine whether a compound will be highly positive in the DNA repair assay as in the case of BLM, cis-Pt, MMC and NAT, and less effective in inducing mutations under similar conditions, or whether the opposite will occur, as in the case of INH; DES and CP probably do not interact sufficiently with bacterial DNA to show an effect in either of the genetic endpoints; and the present DNA repair host-mediated assay may represent a sensitive, rapid and economic method for monitoring genotoxic factors in various organs of experimental animals which have been treated with cytostatic drugs.  相似文献   

6.
Ahn B  Kang D  Kim H  Wei Q 《Molecules and cells》2004,18(2):249-255
DNA repair capacity in a cell could be detected by a host-cell reactivation assay (HCR). Since relation between DNA repair and genetic susceptibility to cancer remains unclear, it is necessary to identify DNA repair defects in human cancer cells. To assess DNA repair for breast cancer susceptibility, we developed a modified HCR assay using a plasmid containing a firefly luciferase gene damaged by mitomycin C (MMC), which forms interstrand cross-link (ICL) adducts. In particular, interstrand cross-link is thought to induce strand breaks being repaired by homologous recombination. The MMC-ICLs were verified by electrophoresis. Damaged plasmids were transfected into apparently normal human lymphocytes and NER-deficient XP cell lines and the DNA repair capacity of the cells were measured by quantifying the activity of the firefly luciferase. MMC lesion was repaired as much as UV adducts in normal lymphocytes and the XPC cells. However, the XPA cells have a lower repair capacity for MMC lesion than the XPC cell, indicating that the XPA protein may be involved in initial damage recognition of MMC-ICL adducts. Since several repair pathways including NER and recombination participate in MMC-ICL removal, this host cell reactivation assay using MMC-ICLs can be used in exploring DNA repair defects in human cancer cells.  相似文献   

7.
The DNA repair host-mediated assay was further calibrated by testing 7 chemotherapeutic agents known to possess carcinogenic activity, namely bleomycin (BLM), cis-diamminedichloroplatinum-II (cis-Pt), cyclophosphamide (CP), diethylstilboestrol (DES), isonicotinic acid hydrazide (isoniazid, INH), natulan (NAT) and mitomycin C (MMC). Differential survival of wild-type and uvrB/recA E. coli strains served as a measure of genotoxic activity. In in vitro assays, BLM, cis-Pt and MMC exhibited high genotoxic activity. The other 4 compounds had no measurable effect on the survival of the two strains, either with or without mouse liver preparations. In the host-mediated assays BLM, cis-Pt, MMC and also NAT induced strong killing of the DNA repair-deficient bacteria recovered from liver, spleen, lungs, kidneys and the blood of treated mice compared to the wild-type strain. The results are not indicative of large organ-specific differences in genotoxically active amounts of the drugs immediately after their application to the host animals. CP, INH and DES did not show geneotix activity in these assays even at very high exposure levels. To compare the genetic endpoint measured in the DNA repair assays, i.e. induction of repairable DNA damage, with the induction of gene mutations, the ability of the 7 drugs to induce valine-resistant (VALr) mutants in E. coli was measured in host-mediated assays under identical treatment conditions. INH showed considerable mutagenic activity in E. coli cells recovered from liver and spleen, while BLM and MMC induced a 3–4-fold increase in VALr mutants above spontaneous levels. The other compounds showed no mutagenic activity under these in vivo conditions. From these results it can be concluded that (i) the type of primary DNA lesions produced by these chemotherapeutic agents (cross-links by MMC and cis-Pt, and strand breaks by BLM and possibly by NAT; base alkylation by INH) appears to determine whether a compound will be highly positive in the DNA repair assay as in the case of BLM, cis-Pt, MMC and NAT, and less effective in inducing mutations under similar conditions, or whether the opposite will occur, as in the case of INH; (ii) DES and CP probably do not interact sufficiently with bacterial DNA to show an effect in either of the genetic endpoints; and (iii) the present DNA repair host-mediated assay may represent a sensitive, rapid and economic method for monitoring genotoxic factors in various organs of experimental animals which have been treated with cytostatic drugs.  相似文献   

8.
The relative importance of different sites of alkylation on DNA was determined by comparing two ethylating agents. 1-Ethyl-1-nitrosourea (ENU) ethylates DNA with a higher proportion of total adducts on ring oxygens than ethyl methanesulfonate, which ethylates with a higher proportion of total adducts on the N-7 of guanine. Research with somatic cells in culture and prokaryotes strongly suggests that O6-guanine (O6-G) is the principal genotoxic site. To determine the importance in germ-line mutagenesis of the O6-G site relative to the N-7 of guanine, dose-response curves were constructed for both ENU and EMS, where dose was measured as total adducts per deoxynucleotide (APdN) and response as sex-linked recessive lethals (SLRL) induced in Drosophila melanogaster spermatozoa. For both mutagens the dose response curve was linear and extrapolated to the origin. The dose-response curve for ENU was fit to an equation m = 6.2D, and the dose response curve for EMS, from this and previous experiments, was m = 3.2D where m = %SLRL and D = APdN X 10(-3). Therefore, ENU is 1.9 times more efficient per adduct in inducing SLRL mutations than EMS. In vitro studies showed that ENU induced 9.5% of its total adducts on O6-G while EMS induced 2.0% of its adducts on O6-G. If O6-G was the sole genotoxic site, then ENU should be 4.8 times more efficient per adduct than EMS. In contrast, if N-7 G was the sole genotoxic site, ENU would be only 0.19 as effective as EMS. It was concluded that while O6-G was the principal genotoxic site, N-7 G made a significant contribution to germ-line mutagenesis.  相似文献   

9.
The random amplified polymorphic DNA (RAPD) assay and related techniques like the arbitrarily primed polymerase chain reaction (AP-PCR) have been shown to detect genotoxin-induced DNA damage and mutations. The changes occurring in RAPD profiles following genotoxic treatments include variation in band intensity as well as gain or loss of bands. However, the interpretation of the molecular events responsible for differences in the RAPD patterns is not an easy task since different DNA alterations can induce similar type of changes. In this study, we evaluated the effects of a number of DNA alterations on the RAPD profiles. Genomic DNA from different species was digested with restriction enzymes, ultrasonicated, treated with benzo[a]pyrene (B[a]P) diol epoxide (BPDE) and the resulting RAPD profiles were evaluated. In comparison to the enzymatic DNA digestions, sonication caused greater changes in the RAPD patterns and induced a dose-related disappearance of the high molecular weight amplicons. A DNA sample substantially modified with BPDE caused very similar changes but amplicons of low molecular weight were also affected. Appearance of new bands and increase in band intensity were also evident in the RAPD profiles generated by the BPDE-modified DNA. Random mutations occurring in mismatch repair-deficient strains did not cause any changes in the banding patterns whereas a single base change in 10-mer primers produced substantial differences. Finally, further research is required to better understand the potential and limitations of the RAPD assay for the detection of DNA damage and mutations.  相似文献   

10.
The random amplified polymorphic DNA (RAPD) assay and related techniques like the arbitrarily primed polymerase chain reaction (AP-PCR) have been shown to detect genotoxin-induced DNA damage and mutations. The changes occurring in RAPD profiles following genotoxic treatments include variation in band intensity as well as gain or loss of bands. However, the interpretation of the molecular events responsible for differences in the RAPD patterns is not an easy task since different DNA alterations can induce similar type of changes. In this study, we evaluated the effects of a number of DNA alterations on the RAPD profiles. Genomic DNA from different species was digested with restriction enzymes, ultrasonicated, treated with benzo[a]pyrene (B[a]P) diol epoxide (BPDE) and the resulting RAPD profiles were evaluated. In comparison to the enzymatic DNA digestions, sonication caused greater changes in the RAPD patterns and induced a dose-related disappearance of the high molecular weight amplicons. A DNA sample substantially modified with BPDE caused very similar changes but amplicons of low molecular weight were also affected. Appearance of new bands and increase in band intensity were also evident in the RAPD profiles generated by the BPDE-modified DNA. Random mutations occurring in mismatch repair-deficient strains did not cause any changes in the banding patterns whereas a single base change in 10-mer primers produced substantial differences. Finally, further research is required to better understand the potential and limitations of the RAPD assay for the detection of DNA damage and mutations.  相似文献   

11.
12.
Polychlorinated biphenyls (PCBs): mutagenicity and carcinogenicity   总被引:6,自引:0,他引:6  
S Safe 《Mutation research》1989,220(1):31-47
The potential mutagenicity and carcinogenicity of commercial PCBs has been investigated in both in vivo and in vitro systems and several conclusions can be drawn from these studies. (1) PCBs can covalently adduct DNA both in vivo and in vitro (using a source of metabolic activation); the more highly chlorinated biphenyls are poorly metabolized and these compounds tend to exhibit very low binding to DNA. Based on the structure-activity relationships for PCBs (Safe, 1984) it is unlikely that the more toxic compounds such as 3,3',4,4',5-penta- and 3,3',4,4',5,5'-hexachlorobiphenyl, would form covalent adducts with DNA. (2) PCB mixtures and individual compounds exhibit minimal mutagenic activity in most assay systems. (3) The more highly chlorinated PCB mixtures (i.e. greater than 50% Cl by weight) are hepatocarcinogens in rodents whereas data from a limited number of studies suggest that the lower chlorinated mixtures are not carcinogenic. (4) In some model systems, the higher chlorinated PCB mixtures act as promoters of preneoplastic lesions and hepatocellular carcinomas in rodents treated with a variety of initiators. (5) Aroclor 1254 acts as a promoter of skin papilloma formation in HRS/J hairless mice and structure-activity and genetic studies suggest that the Ah receptor is necessary but not sufficient for the activity of halogenated aryl hydrocarbons as promoters in hairless mice. (6) Individual PCB congeners and higher chlorinated commercial mixtures also exhibit anti-carcinogenic activity in the CD-1 mouse skin cancer model. (7) Results from occupational studies suggest that individuals exposed to PCBs may have an excess of cancer at some sites, however, the most comprehensive study (Brown, 1987) suggests that there are no significant increases in the overall cancer rate in workers exposed to PCBs. Follow-up and continuing epidemiological studies on the PCB-exposed workers are required to further clarify the potential carcinogenic effects of PCBs on humans. In several strains of rats and mice, there is a high incidence of hepatic preneoplastic lesions and carcinomas and these lesions can be induced by diverse promoting agents (Schulte-Hermann et al., 1983; Weinstein, 1984). Since PCBs are not mutagenic and do not readily form covalent adducts with cellular DNA, it is likely that the higher chlorinated biphenyls are not genotoxic and act as promoters of carcinogenesis in rodents. A comparable mechanism has been suggested for 2,3,7,8-TCDD (Shu et al., 1987; Weinstein, 1984). For PCBs, the role of the Ah receptor in mediating their activity as promoters has not been delineated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Repair-defective mutants of Drosophila melanogaster which identify two major DNA excision repair loci have been examined for their effects on alkylation-induced mutagenesis using the sex-linked recessive lethal assay as a measure of genotoxic endpoint. The alkylating agents (AAs) chosen for comparative analysis were selected on the basis of their reaction kinetics with DNA and included MMS, EMS, MNU, DMN, ENU, DEN and ENNG. Repair-proficient males were treated with the AAs and mated with either excision-defective mei-9L1 or mus(2)201D1 females or appropriate excision-proficient control females. The results of the present work suggest that a qualitative and quantitative relationship exists between the nature and the extent of chemical modification of DNA and the induction of of genetic alterations. The presence of either excision-defective mutant can enhance the frequency of mutation (hypermutability) and this hypermutability can be correlated with the Swain-Scott constant S of specific AAs such that as the SN1 character of the DNA alkylation reaction increases, the difference in response between repair-deficient and repair-proficient females decreases. The order of hypermutability of AAs with mei-9L1 relative to mei-9+ is MMS greater than MNU greater than DMN = EMS greater than iPMS = ENU = DEN = ENNG. When the percentage of lethal mutations induced in mei-9L1 females are plotted against those determined for control females, straight lines of different slopes are obtained. These mei-9L1/mei-9+ indices are: MMS = 7.6, MNU = 5.4, DMN = 2.4, EMS = 2.4 and iPMS = ENU = DEN = ENNG = 1. An identical order of hypermutability with similar indices is obtained for the mus(2)201 mutants: MMS(7.3) greater than MNU (5.4) greater than EMS(2.0) greater than ENU(1.1). Thus, absence of excision repair function has a significant effect on mutation production by AAs efficient in alkylating N-atoms in DNA but no measurable influence on mutation production by AAs most efficient in alkylating O-atoms in DNA. The possible nature of these DNA adducts has been discussed in relation to repair of alkylated DNA. In another series of experiments, the effect on alkylation mutagenesis of mei-9L1 was studied in males, by comparing mutation induction in mei-9L1 males vs. activity in Berlin K (control). Although these experiments suggested the existence of DNA repair in postmeiotic cells during spermatogenesis, no quantitative comparisons could be made.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that have been linked to certain human cancers. The fjord region PAH dibenzo[a,l]pyrene exhibits the highest levels of carcinogenic activity of all PAH as yet tested in rodent tumor models. Another hexacyclic aromatic hydrocarbon, dibenzo[c,p]chrysene (DBC), is a unique PAH that possesses one bay region and two fjord regions within the same molecule. Due to its structure, which is a merger of the fjord region PAHs benzo[c]phenanthrene, benzo[c]chrysene, and benzo[g]chrysene, DBC is of considerable research interest. In order to investigate the pathway of regioselective metabolism we have studied the cytotoxicity, metabolic activation and DNA adduct formation of DBC in human mammary carcinoma MCF-7 cells in culture. The cytotoxicity assay indicated undisturbed cell proliferation even at concentrations as high as 4.5 microM (1.5 micro g/ml) DBC. Concurrently, DNA adducts were detected in MCF-7 cells treated with DBC only in low amounts (0.6 pmol adducts/mg DNA). On the contrary, exposure to anti-DBC-1,2-diol-3,4-epoxide and anti-DBC-11,12-diol-13,14-epoxide, two putatively genotoxic metabolites of DBC, resulted in high levels of DNA adducts (33 and 51 pmol adducts/mg DNA, respectively). Although DBC was not efficiently transformed into DNA-reactive metabolites in MCF-7 cells in culture, the results from our study indicate that the two fjord region diol-epoxide derivatives of DBC may serve as ultimate genotoxic metabolites once they are enzymatically generated under certain circumstances in vitro or in vivo.  相似文献   

15.
DNA damage caused by lipid peroxidation products   总被引:5,自引:0,他引:5  
Lipid peroxidation is a process involving the oxidation of polyunsaturated fatty acids (PUFAs), which are basic components of biological membranes. Reactive electrophilic compounds are formed during lipid peroxidation, mainly alpha, beta-unsaturated aldehydes. These compounds yield a number of adducts with DNA. Among them, propeno and substituted propano adducts of deoxyguanosine with malondialdehyde (MDA), acrolein, crotonaldehyde and etheno adducts, resulting from the reactions of DNA bases with epoxy aldehydes, are a very important group of adducts. The epoxy aldehydes are more reactive towards DNA than the parent unsaturated aldehydes. The compounds resulting from lipid peroxidation mostly react with DNA showing both genotoxic and mutagenic action; among them, 4-hydroxynonenal is the most genotoxic, while MDA is the most mutagenic. DNA damage caused by the adducts of lipid peroxidation products with DNA can be removed by the repairing action of glycosylases. The formed adducts have been hitherto analyzed using the IPPA (Imunopurification-(32)P-postlabelling assay) method and via gas chromatography/electron capture negtive chemical ionization/mass spectrometry (GC/EC NCI/MS). A combination of liquid chromatography with electrospray tandem mass spectrometry (LC/ES-MSMS) with labelled inner standard has mainly been used in recent years.  相似文献   

16.
Several methods to assess genotoxicity of physical and chemical agents have been developed, most of which depend on growing colonies in selective medium. We recently published a new method for detecting mutations in the CD59 gene in a Chinese hamster ovary cell line that contains a single copy of human chromosome 11 (CHO AL). The assay is based on detecting the surface expression of CD59 with monoclonal antibodies using flow cytometry. The capabilities of this flow cytometry mutation assay (FCMA) to detect mutations from a wide variety of genotoxic agents are described here. There was a 400-fold separation between CD59 and CD59+ populations based on fluorescence intensity. Small numbers of negative cells mixed in with positive cells were detected in a highly linear fashion. Mutation dose response curves over a dose range yielding 80% to 20% survival are shown for ethyl methane sulfonate (EMS), mitomycin C (MMC) and lead acetate. EMS and lead acetate exhibited a threshold in response while MMC had a linear dose response over the full dose range. The mutant fraction was measured over time periods ranging up to 35 days following treatment. The mutant fraction peaked at different times ranging from 6 to 12 days after treatment. An additional 14 chemical and physical agents including point mutagens, heavy metals, ionizing and UV radiation, and DNA intercalators and cross linkers, were analyzed for mutagenic potential after doses giving 80% to 20% survival. The results presented here demonstrate the sensitivity and broad-ranging capability of the FCMA to detect mutations induced by a variety of genotoxic agents.  相似文献   

17.
To validate the alkaline single cell gel (SCG) assay as a tool for the detection of DNA damage in human leukocytes, we investigated the in vitro activity of 18 chemicals. Thirteen of these chemicals (pyrene (PY), benzo(a)pyrene (BaP), cyclophosphamide (CP), 4-nitroquinoline-1-oxide (4NQO), bleomycin (BLM), methylmercury chloride (MMC), mitomycin C (MTC), hydrogen peroxide (HP), diepoxybutane (DEB), glutaraldehyde (GA), formaldehyde (FA), griseofulvin (GF), sodium azide (NA)) are genotoxic in at least one cell system, while five compounds (ascorbic acid (AA), glucose (GL), D-mannitol (MAN), O-vanillin (VAN), chlorophyllin (CHL)) are classified as non-genotoxic. In this in vitro SCG assay, PY, BaP and CP were positive with exogeneous metabolic activation (rat S9 mix) while 4NQO, BLM, MMC, MTC, hydrogen peroxide, and diepoxbutane were positive in the absence of metabolic activation. CHL and VAN were unexpectedly found to induce a dose-dependent increase in DNA migration. AA, GL, and MAN were negative in a non-toxic range of doses. GF gave equivocal results, while FA and GA increased DNA migration at low doses and decreased DNA migration at higher doses. This behaviour is consistent with the known DNA damaging and crosslinking properties of these compounds. These data support the sensitivity and specificity of this assay for identifying genotoxic agents.  相似文献   

18.
The effects of secondary structure on DNA modification by (+/-)-7 beta, 9 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzol[a]pyrene [(+/-)BPDE I] were investigated. No differences in the total extent of (+/-) BPDE I binding to double- and single-stranded calf thymus DNA were found. High-performance liquid chromatography (LC) of the nucleoside adducts obtained from hydrolysates of native and denatured calf thymus, as well as from superhelical and linear plasmid DNA, indicated that in all cases the major adduct (60--80% of total adducts) was formed by reaction of the (+) enantiomer of BPDE I with the N-2 position of dG residues in the DNA. A minor adduct formed from the reaction of the (-) enantiomer with dG residues was also detected and was present in greater amounts in denautred DNA than in native DNA. Small amounts of BPDE I--dA and BPDE I--dC adducts were also detected in both the single- and double-stranded DNAs. Restriction enzyme analysis of BPDE I modified SV40 and phage lambda DNA provided evidence that the modification of DNA by this carcinogen is fairly random with respect to nucleotide sequence. Partial hydrolysis of modified plasmid DNA by the single-strand-specific S1 nuclease and LC analysis of the nucleoside adducts in the digested and undigested fractions of the DNA revealed no preferential excision by the S1 nuclease of the different BPDE I--deoxynucleoside adducts. Functional changes in BPDE I modified DNA were demonstrated. With increasing extents of modification, there was a decrease in the ability of plasmid DNA to transfect a receptive Escherichia coli strain to antibiotic resistance.  相似文献   

19.
Different variants of the comet assay were used to study the genotoxic and cytotoxic properties of the following eight compounds: chloral hydrate, colchicine, hydroquinone, DL-menthol, mitomycin C, sodium iodoacetate, thimerosal and valinomycin. Colchicine, mitomycin C, sodium iodoacetate and thimerosal induced genotoxic effects. The other compounds were found to be inactive. The compounds were tested in the standard comet assay as well as in the all cell comet assay (recovery of floating cells after treatment), designed in our laboratory for adherently-growing cells. This latter procedure proved to be more adequate for the assessment of the cytotoxicity for some of the compounds tested (hydroquinone, DL-menthol, thimerosal, valinomycin). Colchicine was positive in the standard comet assay (3h treatment) and in the all cell comet assay (24h treatment). Sodium iodoacetate and thimerosal were positive in the standard and/or the all cell comet assay. Chloral hydrate, hydroquinone, sodium iodoacetate, mitomycin C and thimerosal were also tested in the modified comet assay using lysed cells. Mitomycin C and thimerosal showed effects in this assay, whereas sodium iodoacetate was inactive. This indicates that it does not induce direct DNA damage. Compounds that are known or suspected to form DNA-DNA cross-links or DNA-protein cross-links (chloral hydrate, hydroquinone, mitomycin C and thimerosal) were checked for their ability to reduce ethyl methanesulfonate (EMS)-induced DNA damage. This mode of action could be demonstrated for mitomycin C only.  相似文献   

20.
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号