首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Programmed cell death (PCD) is utilized in a wide variety of tissues to refine structure in developing tissues and organs. However, little is understood about the mechanisms that, within a developing epithelium, combine signals to selectively remove some cells while sparing essential neighbors. One popular system for studying this question is the developing Drosophila pupal retina, where excess interommatidial support cells are removed to refine the patterned ommatidial array. In this paper, we present data indicating that PCD occurs earlier within the pupal retina than previously demonstrated. As with later PCD, this death is dependent on Notch activity. Surprisingly, altering Drosophila Epidermal Growth Factor Receptor or Ras pathway activity had no effect on this death. Instead, our evidence indicates a role for Wingless signaling to provoke this cell death. Together, these signals regulate an intermediate step in the selective removal of unneeded interommatidial cells that is necessary for a precise retinal pattern.  相似文献   

2.
3.
To explore the hypothesis that alterations in cellular membrane lipids are present at the stage of pre‐clinical Alzheimer's disease (AD) (i.e., cognitively normal at death, but with AD neuropathology), we performed targeted shotgun lipidomics of lipid extracts from post‐mortem brains of subjects with pre‐clinical AD. We found sulfatide levels were significantly lower in subjects with pre‐clinical AD compared to those without AD neuropathology. We also found that the level of ethanolamine glycerophospholipid was marginally lower at this stage of AD, whereas changes of the ceramide levels were undetectable with the available samples. These results indicate that cellular membrane defects are present at the earliest stages of AD pathogenesis and also suggest that sulfatide loss is among the earliest events of AD development, while alterations in the levels of ethanolamine glycerophospholipid and ceramide occur relatively later in disease.  相似文献   

4.
Activation of T cells requires at least two signals transduced by the Ag-specific TCR and a costimulatory ligand such as CD28. CTLA-4, expressed on activated T cells, binds to B7 present on APCs and functions as a negative regulator of T cell activation. Our laboratory previously reported the association of Graves' disease (GD) with a specific CTLA-4 gene polymorphism. In theory, reduced expression or function of CTLA-4 might augment autoimmunity. In the present study, we categorized autoimmune thyroid disease patients and normal controls (NC) by genotyping a CTLA-4 exon 1 polymorphism and investigated the function of CTLA-4 in all subjects. PBMCs and DNA were prepared from GD (n = 45), Hashimoto's thyroiditis (HT) (n = 18), and NC (n = 43). There were more GD patients with the G/G or A/G alleles (82.2% vs 65.1% in NC), and significantly fewer patients with the A/A allele (17.8% vs 34.9% in NC). In the presence of soluble blocking anti-human CTLA-4 mAb, T cell proliferation following incubation with allogeneic EBV-transformed B cells was augmented in a dose-dependent manner. Augmentation induced by CTLA-4 mAb was similar in GD and NC (GD, HT, NC = 156%, 164%, 175%, respectively). We related CTLA-4 polymorphism to mAb augmentation of T cell proliferation in each subgroup (GD, HT, NC). Although PBMC from individuals with the G/G alleles showed 132% augmentation, those with the A/A alleles showed 193% augmentation (p = 0.019). CTLA-4 polymorphism affects the inhibitory function of CTLA-4. The G allele is associated with reduced control of T cell proliferation and thus contributes to the pathogenesis of GD and presumably of other autoimmune diseases.  相似文献   

5.
Two-dimensional protein gels were used to systematically assess changes in gene expression in Friend erythroleukemia cells after exposure to inducers of differentiation. A rapid decrease in expression of the stress protein HSP70 was observed after exposure to inducers. The kinetics of this change suggest that it may be related to the cellular events that regulate the onset of differentiation.  相似文献   

6.
Elevated production of amyloid-beta (A beta) as a preventive antioxidant for brain lipoproteins under the action of increased oxidative stress in aging is postulated to represent a major event in the development of Alzheimer's disease (AD). Increase in A beta production is followed by chelation of transition metal ions by A beta, accumulation of A beta-metal lipoprotein aggregates, production of reactive oxygen species and neurotoxicity. Chelation of copper by A beta is proposed to be a most important part of this pathway, because A beta binds copper stronger than other transition metals and because copper is a more efficient catalyst of oxidation than other metals. This amyloid-binds-copper (ABC) model does not remove A beta peptide from its central place in our current thinking of AD, but rather places additional factors in the center of discussion. Most importantly, they embrace pathological mechanisms known to develop in aging (which is the major risk factor for AD), such as increased production of reactive oxygen species by mitochondria, that are positioned upstream relative to the generation of A beta.  相似文献   

7.
In Huntington's disease (HD), neuronal loss is most prominent in the striatum leading to emotional, cognitive and progressive motor dysfunction. The R6/2 mice, transgenic for exon 1 of the HD gene, develop a neurological phenotype with similarities to these features of HD. In striatal tissue, electrically evoked release of tritiated acetylcholine (ACh) and dopamine (DA) were compared in wild-type (WT) and R6/2 mice. In R6/2 mice, the evoked release of ACh, its M2 autoreceptor-mediated maximum inhibition and its dopamine D2 heteroreceptor-mediated maximum inhibition was diminished to 51%, 74% and 87% of controls, respectively. Also, the activities of choline acetyltransferase and of synaptosomal high-affinity choline uptake decreased progressively with age in these mice. In the DA release model, however, electrical stimulation elicited equal amounts of [3H]-DA both in WT and R6/2 mice. Moreover, high-affinity DA uptake into striatal slices was similar in WT and R6/2 mice. In order to confirm these findings in vivo, intrastriatal levels of extracellular DA were measured by intracerebral microdialysis in freely moving mice: striatal DA levels were found to be equal in WT and R6/2 mice. In conclusion, in the transgenic R6/2 mice changes occur mainly in striatal cholinergic neurones and their pre-synaptic modulation, but not in the dopaminergic afferent terminals. Whether similar events also contribute to the pathogenesis of HD in humans has to be established.  相似文献   

8.
An increase of methylase activity is often related to neoplastic transformation. SAH, the natural inhibitor of transmethylases, does not inhibit cell transformation induced by RSV, in contrast to one of its synthetic analogues, SIBA. This inefficiency was thought to be due to the rapid metabolism of SAH by transformed cells. We now show, that, on the contrary, 70 % of the added amount of SAH disappears in one hour in cell-free extracts of normal cell against only 14 % in extracts of transformed cells. This decreased rate of degradation occurred one day post infection. Cells infected with the non transforming RAV1 degrade SAH at the same rate as normal cells. A decrease of SAH-hydrolase and adenosine deaminase activity was also observed in infected cells. The decrease of the first enzyme seems to be related to the transformed state, whereas that of the second enzyme seems to depend only on infection, since it is also observed in cells infected with RAV1.  相似文献   

9.
Both human and mouse cells express an alternatively spliced variant of BRCA1, BRCA1-Delta11, which lacks exon 11 in its entirety, including putative nuclear localization signals. Consistent with this, BRCA1-Delta11 has been reported to reside in the cytoplasm, a localization that would ostensibly preclude it from playing a role in the nuclear processes in which its full-length counterpart has been implicated. Nevertheless, the finding that murine embryos bearing homozygous deletions of exon 11 survive longer than embryos that are homozygous for Brca1 null alleles suggests that exon 11-deleted isoforms may perform at least some of the functions of Brca1. We have analyzed both the full-length and the exon 11-deleted isoforms of the murine Brca1 protein. Our results demonstrate that full-length murine Brca1 is identical to human BRCA1 with respect to its cell cycle regulation, DNA damage-induced phosphorylation, nuclear localization, and association with Rad51. Surprisingly, we show that endogenous Brca1-Delta11 localizes to discrete nuclear foci indistinguishable from those found in wild-type cells, despite the fact that Brca1-Delta11 lacks previously defined nuclear localization signals. However, we further show that DNA damage-induced phosphorylation of Brca1-Delta11 is significantly reduced compared to full-length Brca1, and that gamma irradiation-induced Rad51 focus formation is impaired in cells in which only Brca1-Delta11 is expressed. Our results suggest that the increased viability of embryos bearing homozygous deletions of exon 11 may be due to expression of Brca1-Delta11 and suggest an explanation for the genomic instability that accompanies the loss of full-length Brca1.  相似文献   

10.
11.
Germline alterations of the BRCA1 tumor suppressor gene have been implicated at least in half of familial breast cancers. Nevertheless, in sporadic breast cancer no mutation of this gene has been characterized to date. In sporadic breast tumors, other BRCA1 gene loss of function mechanisms, such as down-regulation of gene expression, have been suggested. In an effort to better understand the relationship between BRCA1 expression and malignant transformation, we have adapted the new real-time quantitative PCR method based on a 5' nuclease assay and the use of doubly labeled fluorescent TaqMan probes to quantify BRCA1 mRNA. We have compared expression of BRCA1 mRNA with or without exon 11 in the normal breast epithelial cell line MCF10a and in three cancer cell lines (MCF-7, MDA-MB231 and HBL100) by comparing two methods of quantification: the comparative C(T) and the standard curve. We found that the full length BRCA1 mRNA, which encodes the functional nuclear protein, was down-regulated in tumor cells when compared with MCF10a cells.  相似文献   

12.
13.
The effect of prolactin on phospholipid metabolism in the prolactin-dependent rat lymphoma cell line Nb2 was investigated in cells prelabeled with [3H]arachidonic acid or [3H]ethanolamine. Prolactin (20 ng/ml) caused (a) a 20-60% loss of radiolabeled phosphatidylethanolamine within 0.5 to 2 min, (b) a loss of [3H]ethanolamine-labeled phosphatidylethanolamine from crude membranes, (c) a rapid accumulation of [3H]phosphoethanolamine and [3H]ethanolamine, and (d) a transient increase (15 s to 2 min) in prostaglandin F2 alpha and E2. Arachidonic acid (1-2 micrograms/ml) induced Nb2 cell growth but prostaglandin F2 alpha, E2, ethanolamine, and phosphoethanolamine did not. Prostaglandin E2 inhibited while prostaglandin F2 alpha enhanced growth in the presence of prolactin or arachidonic acid. These results suggest that stimulation of Nb2 cell growth by prolactin is linked to activation of a phosphatidylethanolamine-specific phospholipase C. Arachidonic acid and prostaglandin F2 alpha may participate in regulating the mitogenic action of prolactin.  相似文献   

14.
The mechanisms by which neurons die in CAG triplet repeat (polyglutamine) disorders, such as Huntington's disease, are uncertain; however, mitochondrial dysfunction and disordered calcium homeostasis have been implicated. We previously demonstrated abnormal mitochondrial calcium handling in Huntington's disease cell lines and transgenic mice. To examine whether these abnormalities might arise in part from direct effects of the expanded polyglutamine tract contained in mutant huntingtin, we have exposed normal rat liver and human lymphoblast mitochondria to glutathione S-transferase fusion proteins containing polyglutamine tracts of 0, 19, or 62 residues. Similar to bovine serum albumin, each of the protein constructs nonspecifically inhibited succinate-supported respiration, independent of polyglutamine tract length. There was a small but significant reduction of mitochondrial membrane potential (state 4) only in the presence of the pathological-length polyglutamine tract. With successive addition of small Ca(2+) aliquots, mitochondria exposed to pathological-length polyglutamine tracts (approximately 5 microM) depolarized much earlier and to a greater extent than those exposed to the other protein constructs. These results suggest that the mitochondrial calcium handling defects seen in Huntington's disease cell lines and transgenic mice may be due, in part, to direct, deleterious effects of mutant huntingtin on mitochondria.  相似文献   

15.
16.
Little is known about the relative role of cAMP-dependent protein kinase (cAPK) and guanine exchange factor directly activated by cAMP (Epac) as mediators of cAMP action. We tested cAMP analogs for ability to selectively activate Epac1 or cAPK and discriminate between the binding sites of Epac and of cAPKI and cAPKII. We found that commonly used cAMP analogs, like 8-Br-cAMP and 8-pCPT-cAMP, activate Epac and cAPK equally as well as cAMP, i.e. were full agonists. In contrast, 6-modified cAMP analogs, like N6-benzoyl-cAMP, were inefficient Epac activators and full cAPK activators. Analogs modified in the 2'-position of the ribose induced stronger Epac1 activation than cAMP but were only partial agonists for cAPK. 2'-O-Alkyl substitution of cAMP improved Epac/cAPK binding selectivity 10-100-fold. Phenylthio substituents in position 8, particularly with MeO- or Cl- in p-position, enhanced the Epac/cAPK selectivity even more. The combination of 8-pCPT- and 2'-O-methyl substitutions improved the Epac/cAPK binding selectivity about three orders of magnitude. The cAPK selectivity of 6-substituted cAMP analogs, the preferential inhibition of cAPK by moderate concentrations of Rp-cAMPS analogs, and the Epac selectivity of 8-pCPT-2'-O-methyl-cAMP was also demonstrated in intact cells. Using these compounds to selectively modulate Epac and cAPK in PC-12 cells, we observed that analogs selectively activating Epac synergized strongly with cAPK specific analogs to induce neurite outgrowth. We therefore conclude that cAMP-induced neurite outgrowth is mediated by both Epac and cAPK.  相似文献   

17.
Directional cell motility is a complex process requiring orchestration of signals from diverse cell adhesion receptors for proper organization of neuronal groups in the brain. The L1 cell adhesion molecule potentiates integrin-dependent migration of neuronal cells and stimulates integrin endocytosis but its mechanism of action is unclear. The hypothesis was investigated that L1 stimulates cell motility by modulating surface levels of integrins through intracellular trafficking using a model cell system. Antibody-induced clustering of L1, which mimics ligand binding, induced formation of cell surface complexes of L1 and beta1 integrins in L1-expressing HEK293 cells. L1 formed cell surface complexes with integrin beta1 and alpha3 subunits but not with integrin alpha1. Following cell surface clustering, beta1 integrins and L1 became rapidly internalized into Rab5+ early endosomes. Internalization of L1 and beta1 integrins was prevented by treatment with monodansyl cadaverine (MDC), an inhibitor of clathrin-dependent endocytosis, and by deletion of the AP2/clathrin binding motif (RSLE) from the L1 cytoplasmic domain. MDC treatment coordinately inhibited L1-potentiated haptotactic migration of HEK293 cells to fibronectin in Transwell assays. These results suggested that downregulation of adhesive complexes of L1 and beta1 integrin at the plasma membrane by clathrin-mediated endocytosis is a potential mechanism for enhancing cell motility.  相似文献   

18.
The hepatic response to cyclic adenosine monophosphate (cAMP) and N6-monobutyryl-cAMP (N6-MB-cAMP) in the glucose and glycogen catabolism and hepatic glycogen levels were evaluated in Walker-256 tumor-bearing rats, on days 5 (WK5), 8 (WK8), and 11 (WK11) after the implantation of tumor. Rats without tumor fed ad libitum (fed control rats) or that received the same daily amount of food ingested by anorexics tumor-bearing rats (pair-fed control rats) or 24 h fasted (fasted control rats) were used as controls. Glucose and glycogen catabolism were measured in perfused liver. Hepatic glycogen levels were lower (p < 0.05) in WK5, WK8, and WK11 rats in comparison with fed control rats, but not in relation to the pair-fed control rats. However, the stimulatory effect of cAMP (3 and 9 μM) in the glycogen catabolism was lower (p < 0.05), respectively, in WK5 and WK8 rats compared to the pair-fed and fed control rats. Accordingly, the suppressive effect of cAMP (6 μM) in the glucose catabolism, under condition of depletion of hepatic glycogen (24 h fast), was lower (p < 0.05) in WK5 and WK11 rats than in fasted control rats. Similarly, the suppressive effect of N6-MB-cAMP (1 μM), a synthetic analogue of cAMP that it is not degraded by phosphodiesterase 3B (PDE3B), in the glucose catabolism was lower (p < 0.05) in WK5 rats compared to fasted control rats. In conclusion, livers of Walker-256 tumor-bearing rats showed lower response to cAMP in the glucose and glycogen catabolism in various stages of tumor development (days 5, 8 and 11), which was probably not due to the lower hepatic glycogen levels nor due to the increased activity of PDE3B.  相似文献   

19.
IQGAP1 is a plasma membrane-associated protein and an important regulator of the actin cytoskeleton, contributing to cell migration, polarity and adhesion. In this study, we demonstrate the nuclear translocation of IQGAP1 using confocal microscopy and cell fractionation. Moreover, we identify a specific pool of IQGAP1 that accumulates in the nucleus during late G1-early S phase of the cell cycle. The nuclear targeting of IQGAP1 was facilitated by N- and C-terminal sequences, and its ability to slowly shuttle between nucleus and cytoplasm/membrane was partly regulated by the CRM1 export receptor. The inhibition of GSK-3β also stimulated nuclear localization of IQGAP1. The dramatic nuclear accumulation of IQGAP1 observed when cells were arrested in G1/S phase suggested a possible role in cell cycle regulation. In support of this, we used immunoprecipitation assays to show that the nuclear pool of IQGAP1 in G1/S-arrested cells associates with DNA replication complex factors RPA32 and PCNA. More important, the siRNA-mediated silencing of IQGAP1 significantly delayed cell cycle progression through S phase and G2/M in NIH 3T3 cells released from thymidine block. Our findings reveal an unexpected regulatory pathway for IQGAP1, and show that a pool of this cytoskeletal regulator translocates into the nucleus in late G1/early S phase to stimulate DNA replication and progression of the cell cycle.  相似文献   

20.
Huntingtin protein (Htt), whose mutation causes Huntington's disease (HD), interacts with large numbers of proteins that participate in diverse cellular pathways. This observation indicates that wild-type Htt is involved in various cellular processes and that the mutated Htt alters these processes in HD. The roles of these interacting proteins in HD pathogenesis remain largely unknown. In the present review, we present evidence that Htt-interacting protein 1 (HIP-1), an endocytic protein, together with its interacting partner HIPPI, regulates apoptosis and gene expression, both processes being implicated in HD. Further studies are necessary to establish whether the HIPPI-HIP-1 complex or other interacting partners of HIPPI regulate apoptosis and gene expression that are relevant to HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号