首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most mitochondrial and chloroplast proteins are synthesized on cytosolic polyribosomes as precursor proteins, with an N-terminal signal sequence that targets the precursor to the correct organelle. In mitochondria, the chaperone Hsp70 functions as a molecular motor, pulling the precursor across the mitochondrial membranes; 97.0% of plant mitochondrial presequences contain an Hsp70 binding site. In chloroplasts, the outer envelope, intermembrane space and a stromal Hsp70 are thought to participate in protein import; 82.5% of chloroplast transit peptides have an Hsp70 binding site. The interaction of signal peptides with Hsp70 during the import process is supported by biochemical and bioinformatic studies.  相似文献   

2.
Hirohashi T  Hase T  Nakai M 《Plant physiology》2001,125(4):2154-2163
Preprotein translocation across the outer and inner envelope membranes of chloroplasts is an energy-dependent process requiring ATP hydrolysis. Several precursor proteins analyzed so far have been found to be imported into isolated chloroplasts equally well in the dark in the presence of ATP as in the light where ATP is supplied by photophosphorylation in the chloroplasts themselves. We demonstrate here that precursors of two maize (Zea mays L. cv Golden Cross Bantam) ferredoxin isoproteins, pFdI and pFdIII, show distinct characteristics of import into maize chloroplasts. pFdI, a photosynthetic ferredoxin precursor, was efficiently imported into the stroma of isolated maize chloroplasts both in the light and in the dark. In contrast pFdIII, a non-photosynthetic ferredoxin precursor, was mostly mis-sorted to the intermembrane space of chloroplastic envelopes as an unprocessed precursor form in the light but was efficiently imported into the stroma and processed to its mature form in the dark. The mis-sorted pFdIII, which accumulated in the intermembrane space in the light, could not undergo subsequent import into the stroma in the dark, even in the presence of ATP. However, when the mis-sorted pFdIII was recovered and used for a separate import reaction, pFdIII was capable of import into the chloroplasts in the dark. pFNRII, a ferredoxin-NADP+ reductase isoprotein precursor, showed import characteristics similar to those of pFdIII. Moreover, pFdIII exhibited similar import characteristics with chloroplasts isolated from wheat (Pennisetum americanum) and pea (Pisum sativum cv Alaska). These findings suggest that the translocation of precursor proteins across the envelope membranes of chloroplasts may involve substrate-dependent light-regulated mechanisms.  相似文献   

3.
Tic22 previously was identified as a component of the general import machinery that functions in the import of nuclear-encoded proteins into the chloroplast. Tic22 is peripherally associated with the outer face of the inner chloroplast envelope membrane, making it the first known resident of the intermembrane space of the envelope. We have investigated the import of Tic22 into isolated chloroplasts to define the requirements for targeting of proteins to the intermembrane space. Tic22 is nuclear-endoded and synthesized as a preprotein with a 50-amino acid N-terminal presequence. The analysis of deletion mutants and chimerical proteins indicates that the precursor of Tic22 (preTic22) presequence is necessary and sufficient for targeting to the intermembrane space. Import of preTic22 was stimulated by ATP and required the presence of protease-sensitive components on the chloroplast surface. PreTic22 import was not competed by an excess of an authentic stromal preprotein, indicating that targeting to the intermembrane space does not involve the general import pathway utilized by stromal preproteins. On the basis of these observations, we conclude that preTic22 is targeted to the intermembrane space of chloroplasts by a novel import pathway that is distinct from known pathways that target proteins to other chloroplast subcompartments.  相似文献   

4.
Protein translocation across membranes is assisted by translocation machineries present in the membrane targeted by the precursor proteins. Translocon subunits can be functionally divided into receptor proteins warranting the specificity of this machine and a translocation channel. At the outer envelope of chloroplasts two sets of receptor proteins regulate protein translocation facing the cytosol or acting in the intermembrane space. One, Toc64 is a receptor of the translocon at the outer envelope of chloroplasts (Toc complex) with dual function. Toc64 recognizes Hsp90 delivered precursor proteins via a cytosolic exposed domain containing three tetratrico-peptide repeat motifs and as demonstrated in here, Toc64 functions also as a major component of a complex facing the intermembrane space. The latter complex is composed of an Hsp70 localized in the intermembrane space, its interaction partner Toc12, a J-domain containing protein and the intermembrane space protein Tic22. We analyzed the intermembrane space domain of Toc64. This domain is involved in preprotein recognition and association with the Toc-complex independent of the cytosolic domain of the Toc64 receptor. Therefore, Toc64 is involved in preprotein translocation across the outer envelope at both sites of the membrane.  相似文献   

5.
The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [gamma-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [gamma-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110,000 x g centrifugation.  相似文献   

6.
Cytochrome b2 is synthesized as a precursor in the cytoplasm and imported to the intermembrane space of yeast mitochondria. We show here that the precursor contains a tightly folded heme-binding domain and that translocation of this domain across the outer membrane requires ATP. Surprisingly, it is ATP in the mitochondrial matrix rather than external ATP that drives import of the heme-binding domain. When the folded structure of the heme-binding domain is disrupted by mutation or by urea denaturation, import and correct processing take place in ATP-depleted mitochondria. These results indicate that (1) cytochrome b2 reaches the intermembrane space without completely crossing the inner membrane, and (2) some precursors fold outside the mitochondria but remain translocation-competent, and import of these precursors in vitro does not require ATP-dependent cytosolic chaperone proteins.  相似文献   

7.
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.  相似文献   

8.
J Lübeck  J Soll  M Akita  E Nielsen    K Keegstra 《The EMBO journal》1996,15(16):4230-4238
Proteins from both the inner and outer envelope membranes are engaged in the recognition and translocation of precursor proteins into chloroplasts. A 110 kDa protein of the chloroplastic inner envelope membrane was identified as a component of the protein import apparatus by two methods. First, this protein was part of a 600 kDa complex generated by cross-linking of precursors trapped in the translocation process. Second, solubilization with detergents of chloroplasts containing trapped precursors resulted in the identification of a complex containing both radiolabeled precursor and IEP110. Trypsin treatment of intact purified chloroplasts was used to study the topology of IEP110. The protease treatment left the inner membrane intact while simultaneously degrading domains of inner envelope proteins exposed to the intermembrane space. About 90 kDa of IEP110 was proteolitically removed, indicating that large portions protrude into the intermembrane space. Hydropathy analysis of the protein sequence deduced from the isolated cDNA clone in addition to Western blot analysis using an antiserum of IEP110 specific to the N-terminal 20 kDa, suggests that the N-terminus serves to anchor the protein in the membrane. We speculate that IEP110 could be involved in the formation of translocation contact sites due to its specific topology.  相似文献   

9.
We have developed a fast and reliable method for the separation of two membrane fractions respectively enriched in outer and inner envelope membranes from isolated, intact, purified spinach chloroplasts kept in a hypertonic medium (0.6 M mannitol). This separation was achieved by osmotically shrinking the inner envelope membrane, thus widening the intermembrane space, and then subsequently removing the "loosened" outer envelope membrane by applying low pressure to the shrunken chloroplasts and slowly extruding them through the small aperture of a Yeda press under controlled conditions. By centrifugation of the mixture obtained through a discontinuous sucrose gradient, we were able to separate two membrane fractions having different densities (fraction 2 or light fraction, d = 1.08 g/cm3, and fraction 3 or heavy fraction, d = 1.13 g/cm3). The recent characterization of polypeptides localized on the outer envelope membrane from spinach chloroplasts, E10 and E24 (Joyard, J., Billecocq, A., Bartlett, S. G., Block, M. A., Chua, N.-H., and Douce, R. J. Biol. Chem., 258, 10000-10006) enabled us to characterize our two membrane fractions. Analyses of the polypeptides by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis and immunoblotting have shown that fraction 2 (light fraction) was completely devoid of polypeptide E30, which is involved in the transport of phosphate across the inner envelope membrane, but was enriched in polypeptides E10 and E24. The reverse was true for fraction 3 (heavy fraction). Under these conditions, it is clear that fraction 2 is strongly enriched in outer envelope membrane whereas fraction 3 consisted mostly of inner envelope membrane. Indeed, by immunoelectrophoresis, we were able to demonstrate that, on a protein basis, fraction 2 contained about 90% of outer membrane, whereas fraction 3 contained about 80% of inner membrane. Further characterization of the outer envelope membrane was achieved by using thermolysin, a nonpenetrant protease.  相似文献   

10.
Vojta L  Soll J  Bölter B 《The FEBS journal》2007,274(19):5043-5054
The import of proteins destined for the intermembrane space of chloroplasts has not been investigated in detail up to now. By investigating energy requirements and time courses, as well as performing competition experiments, we show that the two intermembrane space components Tic22 and MGD1 (E.C. 2.4.1.46) both engage the Toc machinery for crossing the outer envelope, whereas their pathways diverge thereafter. Although MGD1 appears to at least partly cross the inner envelope, Tic22 very likely reaches its mature form in the intermembrane space without involving stromal components. Thus, different pathways for intermembrane space targeting probably exist in chloroplasts.  相似文献   

11.
Y Sasaki  K Sekiguchi  Y Nagano  R Matsuno 《FEBS letters》1991,293(1-2):124-126
We found small GTP-binding proteins in the outer envelope membrane of pea chloroplasts. The proteins in this membrane were separated by SDS-PAGE, transferred to a nitrocellulose filter, and incubated with [alpha-32P]GTP. Three GTP-binding proteins with the molecular weight of 24,000 were found. Binding was prevented by 10(-8)-10(-7) M GTP or by 10(-7) M guanosine 5'-[gamma-thio]triphosphate or GDP; binding was unaffected by 10(-8)-10(-6) M ATP. Thermolysin treatment of intact chloroplasts resulted in the loss of GTP-binding activity, suggesting that these proteins were in the cytosolic side of the outer envelope membrane.  相似文献   

12.
Isolated outer envelope membrane from pea (Pisum sativum L.) chloroplasts can be used in vitro to study binding and partial translocation of precursor proteins destined for the inside of the organelle. Efficient binding to a receptor protein on the outside of the membrane vesicle and generation of a translocation intermediate depends strictly on the presence of ATP. Protease treatment of the translocation intermediate demonstrates its insertion into the membrane. The membrane-inserted precursor protein cannot be extracted by 1 M NaCl and is also NaOH resistant to a large extent. Mild solubilization of outer envelope membranes by detergent resulted in the isolation of a complex which still contained the precursor protein. We have identified a constitutively expressed homologue hsc 70 as part of this membrane complex. Antibodies against hsp 70 (inducible heat shock protein 70) were able to immuno-precipitate the complex bound precursor protein. A second protein of 86 kDa molecular weight (OEP 86) from the outer envelope membrane was also identified as a major component of this complex.  相似文献   

13.
Energy dependence of protein translocation into chloroplasts   总被引:25,自引:0,他引:25  
The translocation of in vitro synthesized precursor proteins into intact spinach chloroplasts was investigated with respect to its energy requirement. It was demonstrated that MgATP itself, and not a transmembrane electrochemical gradient across the envelope membrane, promotes protein import. By manipulating the external and the stromal level of MgATP, we provided evidence that MgATP energized the protein import not within the chloroplast but at the outside of the envelope membrane. It is postulated that an MgATP-dependent phosphorylation/dephosphorylation cycle at the outer membrane face was involved in the course of protein translocation into the chloroplast.  相似文献   

14.
ATP is required for the binding of precursor proteins to chloroplasts   总被引:30,自引:0,他引:30  
One of the first steps in the transport of nuclear-encoded, cytoplasmically synthesized precursor proteins into chloroplasts is a specific binding interaction between precursor proteins and the surface of the organelle. Although protein translocation into chloroplasts requires ATP hydrolysis, binding is generally thought to be energy independent. A more detailed investigation of precursor binding to the surface of chloroplasts showed that ATP was required for efficient binding. Protein translocation is known to require relatively high levels (1 mM or more) of ATP. As little as 50-100 microM ATP caused significant stimulation of precursor binding over controls with no ATP. Several different precursors were tested and all showed increased binding upon addition of low levels of ATP. Nonhydrolyzable analogs of ATP did not substitute for ATP, indicating that ATP hydrolysis was required for binding. A protonmotive force was not involved in the energy requirement for binding. Other (hydrolyzable) nucleotides could substitute for ATP but were less effective at stimulating binding. Binding was stimulated by ATP generated inside chloroplasts even when an ATP trap was present to destroy external ATP. We conclude that internal ATP is required for stimulation of precursor binding to chloroplasts.  相似文献   

15.
Protein translocation across the outer mitochondrial membrane is mediated by the translocator called the TOM (translocase of the outer mitochondrial membrane) complex. The TOM complex possesses two presequence binding sites on the cytosolic side (the cis site) and on the intermembrane space side (the trans site). Here we analyzed the requirement of presequence elements and subunits of the TOM complex for presequence binding to the cis and trans sites of the TOM complex. The N-terminal 14 residues of the presequence of subunit 9 of F(0)-ATPase are required for binding to the trans site. The interaction between the presequence and the cis site is not sufficient to anchor the precursor protein to the TOM complex. Tom7 constitutes or is close to the trans site and has overlapping functions with the C-terminal intermembrane space domain of Tom22 in the mitochondrial protein import.  相似文献   

16.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

17.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

18.
Cytoplasmically synthesized precursors interact with translocation components in both the outer and inner envelope membranes during transport into chloroplasts. Using co-immunoprecipitation techniques, with antibodies specific to known translocation components, we identified stable interactions between precursor proteins and their associated membrane translocation components in detergent-solubilized chloroplastic membrane fractions. Antibodies specific to the outer envelope translocation components OEP75 and OEP34, the inner envelope translocation component IEP110 and the stromal Hsp100, ClpC, specifically co-immunoprecipitated precursor proteins under limiting ATP conditions, a stage we have called docking. A portion of these same translocation components was co-immunoprecipitated as a complex, and could also be detected by co-sedimentation through a sucrose density gradient. ClpC was observed only in complexes with those precursors utilizing the general import apparatus, and its interaction with precursor-containing translocation complexes was destabilized by ATP. Finally, ClpC was co-immunoprecipitated with a portion of the translocation components of both outer and inner envelope membranes, even in the absence of added precursors. We discuss possible roles for stromal Hsp100 in protein import and mechanisms of precursor binding in chloroplasts.  相似文献   

19.
The interactions of precursor proteins with components of the chloroplast envelope were investigated during the early stages of protein import using a chemical cross-linking strategy. In the absence of energy, two components of the outer envelope import machinery, IAP86 and IAP75, cross-linked to the transit sequence of the precursor to the small subunit of ribulose-1, 5-bisphosphate carboxylase (pS) in a precursor binding assay. In the presence of concentrations of ATP or GTP that support maximal precursor binding to the envelope, cross- linking to the transit sequence occurred predominantly with IAP75 and a previously unidentified 21-kD polypeptide of the inner membrane, indicating that the transit sequence had inserted across the outer membrane. Cross-linking of envelope components to sequences in the mature portion of a second precursor, preferredoxin, was detected in the presence of ATP or GTP, suggesting that sequences distant from the transit sequence were brought into the vicinity of the outer membrane under these conditions. IAP75 and a third import component, IAP34, were coimmunoprecipitated with IAP86 antibodies from solubilized envelope membranes, indicating that these three proteins form a stable complex in the outer membrane. On the basis of these observations, we propose that IAP86 and IAP75 act as components of a multisubunit complex to mediate energy-independent recognition of the transit sequence and subsequent nucleoside triphosphate-induced insertion of the transit sequence across the outer membrane.  相似文献   

20.
Toc12 is a novel J domain-containing protein identified in pea (Pisum sativum) chloroplasts. It was shown to be an integral outer membrane protein localizing in the intermembrane space of the chloroplast envelope. Furthermore, Toc12 was shown to associate with an intermembrane space Hsp70, suggesting that Toc12 is important for protein translocation across the chloroplast envelope. Toc12 shares a high degree of sequence similarity with Arabidopsis (Arabidopsis thaliana) DnaJ-J8, which has been suggested to be a soluble protein of the chloroplast stroma. Here, we isolated genes encoding DnaJ-J8 from pea and found that Toc12 is a truncated clone of one of the pea DnaJ-J8s. Protein import analyses indicate that Toc12 and DnaJ-J8s possess a cleavable transit peptide and are localized in the stroma. Arabidopsis mutants with T-DNA insertions in the DnaJ-J8 gene show no defect in chloroplast protein import. Implications of these results in the energetics and mechanisms of chloroplast protein import are discussed.Most chloroplast proteins are encoded by the nuclear genome and synthesized in the cytosol as higher molecular mass precursors with an N-terminal extension known as the transit peptide. Precursor proteins are imported into chloroplasts through a translocon complex located at the chloroplast envelope. Translocon components associated with the outer membrane are called Toc (for translocon of the outer envelope membrane of chloroplast) proteins, and those associated with the inner membrane are called Tic (for translocon of the inner envelope membrane of chloroplast) proteins. Cleavage of the transit peptide from the precursor by a specific stromal processing peptidase during translocation results in the production of the lower molecular mass mature protein. Various translocon components have been assigned functions in the basic steps of the import process (for review, see Inaba and Schnell, 2008; Jarvis, 2008; Li and Chiu, 2010). For example, Toc159 (the no. indicates the calculated molecular mass of the protein) and Toc34 are receptors for the transit peptides, and Toc75 is the protein-translocating channel across the outer membrane. Toc64, on the other hand, has a dual function: it serves as a docking site for the cytosolic Hsp90 through its cytosolic domain and as a scaffold for translocon components located in the intermembrane space through its intermembrane space domain (Qbadou et al., 2007).Protein import into chloroplasts involves at least two distinct ATP-consuming steps. The first step is called “early import intermediate” or “docking,” in which less than 100 μm ATP is required and precursors are translocated across the outer membrane and come into contact with translocon components in the inner membrane (Olsen et al., 1989; Kouranov and Schnell, 1997; Inaba et al., 2003; Inoue and Akita, 2008). It has been shown that the ATP is used in the intermembrane space (Olsen and Keegstra, 1992), most likely by a yet unidentified intermembrane space Hsp70 called imsHsp70 or Hsp70-IAP (ims for “intermembrane space” and IAP for “import intermediate-associated protein”; Marshall et al., 1990; Schnell et al., 1994; Qbadou et al., 2007). The second ATP-consuming step is the complete translocation of precursors across the two envelope membranes into the stroma. This step requires about 1 mm ATP. The ATP is most likely used by the stromal Hsp93 and chloroplast Hsc70 associated with the translocon to drive protein translocation into the stroma (Nielsen et al., 1997; Shi and Theg, 2010; Su and Li, 2010).Hsp70 family proteins are involved in many cellular processes, including protein folding, protein translocation across membranes, and regulation of protein degradation. Hsp70 proteins are often recruited to perform a certain function by specifically localized J domain-containing proteins. The J domain-containing proteins interact with Hsp70 when Hsp70 is bound to ATP and stimulate ATP hydrolysis by Hsp70. The specific J domain-containing cochaperone that recruits the stromal chloroplast Hsc70 to the inner envelope membrane to assist in protein translocation has not been identified. The specific J domain-containing cochaperone for imsHsp70 for its function in protein import into chloroplasts is proposed to be a protein named Toc12 (Becker et al., 2004).Toc12 was identified as a novel J domain-containing protein from pea (Pisum sativum) chloroplasts. It belongs to the type III J domain proteins containing only the J domain without the Gly- and Phe-rich domain (G/F domain) and the zinc-finger domain originally found in Escherichia coli DnaJ. It has been shown that the protein is synthesized at its mature size of 103 amino acids without a cleavable transit peptide. After import, the protein has been shown to anchor in the outer membrane by its N-terminal part, which has been suggested to form a β-barrel-type domain. Its C-terminal part, composed of the J domain, has been shown to localize in the intermembrane space. Toc12 has been shown to associate with imsHsp70. Toc12 and imsHsp70 interact with the intermembrane space domain of Toc64, which in turn associates with another intermembrane space translocon component, Tic22. It is proposed that the Toc12-imsHsp70-Toc64-Tic22 complex mediates protein translocation across the intermembrane space through specific precursor binding and ATP hydrolysis (Becker et al., 2004; Qbadou et al., 2007). However, the existence of imsHsp70 has only been shown on immunoblots by its reactivity to the monoclonal antibody SPA820 raised against human Hsp70. Its encoding gene has never been identified. The Arabidopsis (Arabidopsis thaliana) Hsp70 gene family has 14 members. Only two of them are localized in chloroplasts, and both have been shown to locate in the stroma (Ratnayake et al., 2008; Su and Li, 2008). A recent study has further shown that the major protein recognized by the SPA820 antibody in pea chloroplasts is located in the stroma, indicating that imsHsp70 is most likely a stromal protein (Ratnayake et al., 2008).Most translocon components were originally identified from pea chloroplasts. While all translocon components identified from pea have easily recognizable Arabidopsis homologs, Toc12 seems to be an exception. The Arabidopsis gene suggested to be the pea TOC12 homolog, At1g80920 (Inoue, 2007; Jarvis, 2008), encodes a protein that is much larger than pea Toc12 and is annotated as J8 (referred to as AtJ8 herein). The entire pea Toc12 has a high sequence similarity to the N-terminal two-thirds of AtJ8. AtJ8 contains an extra C-terminal domain of 60 amino acids that is highly conserved among J8 proteins from other higher plants. However, in contrast to pea Toc12, AtJ8 is predicted to locate in the stroma (Miernyk, 2001; www.arabidopsis.org). Indeed, a fusion protein consisting of the first 80 amino acids of AtJ8 fused at the N terminus of GFP was imported into the chloroplast stroma, and approximately 46 amino acids from the N terminus were processed after import (Lee et al., 2008), indicating that the first 46 amino acids of AtJ8 function as a cleavable stroma-targeting transit peptide. A T-DNA insertion in the AtJ8 gene that causes the truncation of the last three amino acids results in no visible phenotype. However, detailed analyses indicate that the mutant has lower CO2 assimilation and Rubisco activity than the wild type (Chen et al., 2010).We are interested in identifying J domain-containing proteins interacting with stromal Hsp70. As part of the initial effort, we investigated the suborganellar location of J8 and examined the relationship between Toc12 and J8. We found that, in pea, there are at least two genes encoding J8, which we named PsJ8a and PsJ8b. TOC12 represents part of PsJ8b. Toc12, AtJ8, and the two PsJ8 proteins could be imported into chloroplasts and processed to stromally localized soluble mature proteins. Four alleles of AtJ8 mutants were analyzed, but none of them showed any defect in the import of various chloroplast precursor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号