首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the critical role lipid droplets play in maintaining energy reserves and lipid stores for the cell, little is known about the regulation of the lipid or protein components within the lipid droplet. Although immunofluorescence of intact cells as well as Western analysis of isolated lipid droplets revealed that sterol carrier protein-2 (SCP-2) was not associated with lipid droplets, SCP-2 expression significantly altered the structure of the lipid droplet. First, the targeting of fatty acid and cholesterol to the lipid droplets was significantly decreased. Second, the content of several proteins important for lipid droplet function was differentially increased (perilipin A), reduced severalfold (adipose differentiation-related protein (ADRP), vimentin), or almost completely eliminated (hormone-sensitive lipase and proteins >93 kDa) in the isolated lipid droplet. Third, the distribution of lipids within the lipid droplets was significantly altered. Double labeling of cells with 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-octadecanoic acid (NBD-stearic acid) and antisera to ADRP showed that 70, 24, and 13% of lipid droplets contained ADRP, NBD-stearic acid, or both, respectively. SCP-2 expression decreased the level of ADRP in the lipid droplet but increased the proportion wherein ADRP and NBD-stearic acid colocalized by 3-fold. SCP-2 expression also decreased the lipid droplet fatty acid and cholesterol mass (nmol/mg protein) by 5.2- and 6.6-fold, respectively. Finally, SCP-2 expression selectively altered the pattern of esterified fatty acids in favor of polyunsaturated fatty acids within the lipid droplet. Displacement studies showed differential binding affinity of ADRP for cholesterol and fatty acids. These data suggested that SCP-2 and ADRP play a significant role in regulating fatty acid and cholesterol targeting to lipid droplets as well as in determining their lipid and protein components.  相似文献   

2.
Hepatic stellate cells store the majority of the liver's retinoid (vitamin A) reserves as retinyl esters in stellate cell lipid droplets. A study was conducted to explore the effects of differences in dietary retinoid and triglyceride intake on the composition of the stellate cell lipid droplets. Weanling rats were placed on one of five diets that differed in retinoid or triglyceride contents. The dietary groups were: 1) control (2.4 mg retinol (as retinyl acetate)/kg diet and 20.5% of the calories supplied by triglyceride (as peanut oil]; 2) low retinol (0.6 mg retinol/kg diet and control triglyceride levels); 3) high retinol (24 mg retinol/kg diet and control triglyceride levels); 4) low triglyceride (2.4 mg retinol/kg diet and 5% of the calories supplied by triglyceride); and 5) high triglyceride (2.4 mg retinol/kg diet and 45% of the calories supplied by triglyceride). Stellate cells were isolated using the pronase-collagenase method and stellate cell lipid droplets were isolated by differential centrifugation. The levels of retinoids and other lipids were measured by high performance liquid chromatography. The stellate cells from control rats contained 113 micrograms total lipid/10(6) cells. Control stellate cell lipid droplets had the following mean percent lipid composition: 39.5% retinyl ester; 31.7% triglyceride; 15.4% cholesteryl ester; 4.7% cholesterol; 6.3% phospholipids; and 2.4% free fatty acids. Both the concentration of stellate cell lipids and the composition of stellate cell lipid droplets were markedly altered by changes in dietary retinoid. The low and high retinol groups contained, respectively, 82 and 566 micrograms total lipid/10(6) cells, with retinyl ester representing, respectively, 13.6% and 65.4% of the lipid present in the stellate cell lipid droplets. Low and high triglyceride groups were similar to controls in both stellate cell lipid content and the composition of the stellate cell lipid droplets. These findings indicate that the composition of stellate cell lipid droplets is strongly regulated by dietary retinoid status but not by dietary triglyceride intake.  相似文献   

3.
To assess whether lipid peroxidation of hepatic mitochondria is associated with cholestatic hepatic injury we examined the effect of bile duct ligation (BDL) versus sham surgery on mitochondrial lipids of rats maintained on one of seven diets. Diets included vitamin E-deficient (E-) and vitamin E-sufficient (E+) combined with normal lipid (11.9% calories as stripped corn oil), high lipid (35% calories as stripped corn oil), or n-3 fatty acid (fish oil) supplementation. Rats were killed 17 days after surgery, mitochondria were isolated by differential centrifugation, and lipid-conjugated dienes and thiobarbituric acid-reacting substances (TBARS) were measured in mitochondrial lipids as indices of lipid peroxidation. BDL resulted in significant increases in lipid peroxidation in all dietary groups. The E- high lipid diets (with either corn oil or fish oil) were associated with higher lipid peroxide and serum bilirubin values in BDL rats compared to the normal lipid diets. Fish oil supplementation did not ameliorate cholestatic or oxidative injury. Serum alanine aminotransferase, bilirubin, alkaline phosphatase, and cholylglycine levels correlated significantly with levels of mitochondrial conjugated dienes and TBARS. These data suggest that free radical stress occurs during BDL in the rat and may result in mitochondrial lipid peroxidation, and that diets high in lipid may increase free radical damage to hepatic mitochondria. The role of free radicals in cholestatic hepatic injury requires further investigation.  相似文献   

4.
The structure and molecular dynamics of recombinant high density lipoproteins (rHDL) were studied by non-radiative energy transfer (NRET), fluorescence anisotropy and intensity measurements. The rHDL particles contained human plasma apolipoprotein (apo) A-I and dipalmitoylphosphatidylcholine (DPPC). Fluorescent cis- and trans-parinaric acids were used both as probes of molecular motion in the particle lipid phase and as acceptors in the Forster's energy transfer from apo A-I tryptophan residues to determine particle dimensions, apolipoprotein localization and lipid dynamics. The probes are sensitive to thermal wobbling (macromobility) and conformational deformations (micromobility) of phospholipid acyl chains. The experimental data fitted to various models of the particle structure are compatible with the following: (a) at T < Tt the particles appeared as lens-like discs with a radius of the lipid phase of 5 nm and a mean thickness of 4 nm, the value being more by 20% in the particle centre, the alpha-helices of about 1 nm thickness were located around the edge of the lipid core. Compared to liposomes, both macro- and micromobility of DPPC molecules in rHDL were more rapid due to a significant disorder of the boundary lipid molecules close to the apo A-I molecule. This disorder led to the increase of the specific surface area per one lipid molecule, S(o). The lipid phase can be divided into three regions: (i) zone I of the most tightly packed lipid (0-1.7 nm from the disc axis) with a S(o) value small as 0.5 nm2; (ii) intermediate zone II (from 1.7 to 4.0 nm); and (iii) boundary lipid zone III (4-5 nm) of significantly disordered lipid with a S(o) value large as 0.65 nm2. (b) at T> Tt the S(o) heterogeneity disappeared, the radius of the lipid phase did not increase significantly, not exceeding 5.2-5.4 nm, but protein-induced immobilization of lipid molecules which affected about half or more of the total lipid, became remarkable. The overall effect was the suppression of the transition amplitude in rHDL compared to liposomes. The structural inhomogeneity might underlie the function of the native plasma HDL as the key component of the transport and metabolism of plasma lipids.  相似文献   

5.
Bonev BB  Chan WC  Bycroft BW  Roberts GC  Watts A 《Biochemistry》2000,39(37):11425-11433
Nisin is a positively charged antibacterial peptide which binds to the negatively charged membranes of Gram-positive bacteria. The initial interaction of the peptide with model membranes of neutral (phosphatidylcholine) and negatively charged (phosphatidylcholine/phosphatidylglycerol) model lipid membranes was studied using nonperturbing solid state magic angle spinning (MAS) (31)P NMR and (2)H wide-line NMR. In the presence of nisin, the coexistence of two bilayer lipid environments was observed both in charged and in neutral membranes. One lipid environment was found to be associated with lipid directly interacting with nisin and one with noninteracting lipid. Solid state (31)P MAS NMR results show that the acidic membrane lipid component partitions preferentially into the nisin-associated environment. Deuterium NMR ((2)H NMR) of the selectively headgroup-labeled acidic lipid provides further evidence of a strong interaction between the charged lipid component and the peptide. The segregation of acidic lipid into the nisin-bound environment was quantified from (2)H NMR measurements of selectively headgroup-deuterated neutral lipid. It is suggested that the observed lipid partitioning in the presence of nisin is driven, at least initially, by electrostatic interactions. (2)H NMR measurements from chain-perdeuterated neutral lipids indicate that nisin perturbs the hydrophobic region of both charged and neutral bilayers.  相似文献   

6.
To establish the changes which occur during embryogenesis and early larvae development, eggs, yolk-sac larvae (one day old larvae) and absorbed yolk-sac larvae (three day old larvae) of white sea bream were examined for lipid class and fatty acid composition. The development was characterized by a decrease in all lipid classes with the exception of phosphatidylserine (PS) and fatty free acids (FFA) which increased, and sphingomyelin (SM) which remained unchanged. The changes observed in lipid class content and the decrease in fatty acids in total lipid (TL) reflect the utilization and mobilization of lipids during both embryogenesis and early larvae development. Fluctuations in the relative composition of fatty acids in phosphatidylcholine (PC) during development suggest a selective bulk uptake and catabolism of fatty acids in this lipid class. Unlike PC, catabolism of triacylglycerol (TG) fatty acid appears to be non-selective. During development, the decrease in levels of polyunsaturated fatty acids (PUFA) eicosapentaenoic (20:5n-3, EPA) and docosahexaenoic (22:6n-3, DHA) in total lipid denotes their utilization as energy substrate by Diplodus sargus larvae.  相似文献   

7.
The effect of aminophospholipid glycation on lipid order and lipid bilayer hydration was investigated using time-resolved fluorescence spectroscopy. The changes of lipid bilayer hydration were estimated both from its effect on the fluorescence lifetime of The 1-[4-(trimethylammonium)-phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) and 1,6-diphenylhexa-1,3,5-triene (DPH) and using solvatochromic shift studies with 1-anilinonaphthalene-8-sulfonic acid. The head-group and acyl chain order were determined from time-resolved fluorescence anisotropy measurements of the TMA-DPH and DPH. The suspensions of small unilamellar vesicles (with phosphatidylethanolamine/phosphatidylcholine molar ratio 1:2.33) were incubated with glyceraldehyde and it was found that aminophospholipids react with glyceraldehyde to form products with the absorbance and the fluorescence properties typical for protein advanced glycation end products. The lipid glycation was accompanied by the progressive oxidative modification of unsaturated fatty acid residues. It was found that aminophospholipid glycation increased the head-group hydration and lipid order in both regions of the membrane. The lipid oxidation accompanying the lipid glycation affected mainly the lipid order, while the effect on the lipid hydration was small. The increase in the lipid order was presumably the result of two effects: (1) the modification of head-groups of phosphatidylethanolamine by glycation; and (2) the degradation of unsaturated fatty acid residues by oxidation.  相似文献   

8.
Full thickness models (FTMs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). However, their stratum corneum (SC) lipid composition differs from NHS causing a reduced skin barrier. The most pronounced differences in lipid composition are a reduction in lipid chain length and increased monounsaturated lipids. The liver-X-receptor (LXR) activates the monounsaturated lipid synthesis via stearoyl-CoA desaturase-1 (SCD-1). Therefore, the aim was to improve the SC lipid synthesis of FTMs by LXR deactivation. This was achieved by supplementing culture medium with LXR antagonist GSK2033. LXR agonist T0901317 was added for comparison. Subsequently, epidermal morphogenesis, lipid composition, lipid organization and the barrier functionality of these FTMs were assessed. We demonstrate that LXR deactivation resulted in a lipid composition with increased overall chain lengths and reduced levels of monounsaturation, whereas LXR activation increased the amount of monounsaturated lipids and led to a reduction in the overall chain length. However, these changes did not affect the barrier functionality. In conclusion, LXR deactivation led to the development of FTMs with improved lipid properties, which mimic the lipid composition of NHS more closely. These novel findings may contribute to design interventions to normalize SC lipid composition of atopic dermatitis patients.  相似文献   

9.
To determine the nonideal mixing of two lipid components within the membrane, lipid cross-linking experiments were carried out on dipalmitoylphosphatidylethanolamine (DPPE) vesicles and on dipalmitoylphosphatidylethanolamine/dipalmitoylphosphatidylserine (DPPE/DPPS) vesicles. By comparison of the cross-linking reactions on both types of vesicle the mean neighbourhood relations within the binary lipid mixture can be obtained. To elucidate the relationship between cluster formation and phase transition, the temperature dependences of the lipid arrangement within the vesicle membrane and of the lipid order parameter describing the fluidity of the membrane were measured. Cluster size and phase transition correlate: during the phase transition of the lipid species with the lower phase-transition temperature (DPPS) the nonideality of the mixture increases by phase separation. Above the phase transition temperature of the second lipid species (DPPE) the clusters disappear and a slight alternating lipid arrangement is characteristic of the fluid phase.  相似文献   

10.
Potential mechanisms underlying zinc's capacity to protect membranes from lipid oxidation were examined in liposomes. Using lipid oxidation initiators with different chemical and physical properties (transition metals, lipid- or water-soluble azo compounds, ultraviolet radiation c (UVc), superoxide radical anion (O2*-), and peroxynitrite (ONOO-) we observed that zinc only prevented copper (Cu2+)- and iron (Fe2+)-initiated lipid oxidation. In the presence of Fe2+, the antioxidant action of zinc depended directly on the negative charge density of the membrane bilayer. An inverse correlation (r2: 0.96) was observed between the capacity of zinc to prevent iron binding to the membrane and the inhibitory effect of zinc on Fe2+-initiated lipid oxidation. The interaction of zinc with the bilayer did not affect physical properties of the membrane, including rigidification and lateral phase separation known to increase lipid oxidation rates. The interactions between zinc and the lipid- (alpha-tocopherol) and water- (epicatechin) soluble antioxidants were studied. The inhibition of Fe2+-induced lipid oxidation by either alpha-tocopherol or epicatechin was increased by the simultaneous addition of zinc. The combined actions of alpha-tocopherol (0.01 mol%), epicatechin (0.5 microM) and zinc (5-50 microM) almost completely prevented Fe2+ (25 microM)-initiated lipid oxidation. These results show that zinc can protect membranes from iron-initiated lipid oxidation by occupying negatively charged sites with potential iron binding capacity. In addition, the synergistic actions of zinc with lipid and water-soluble antioxidants to prevent lipid oxidation, suggests that zinc is a pivotal component of the antioxidant defense network that protects membranes from oxidation.  相似文献   

11.
The partition of cis-parinaric acid (9,11,13,15-cis, trans, trans,cis-octadecatetraenoic acid, cis-PnA) and trans-parinaric acid (9,11,13,15-all-trans-octadecatetraenoic acid, trans-PnA) among aqueous, solid lipid, and fluid lipid phases has been measured by three spectroscopic parameters: absorption spectral shifts, fluorescence quantum yield, and fluorescence polarization. The solid lipid was dipalmitoylphosphatidylcholine (DPPC); the fluid lipid was palmitoyldocosahexaenoylphosphatidylcholine (PDPC). Mole fraction partition coefficients between lipid and water were determined by absorption spectroscopy to be for ci--PnA, 5.3 X 10(5) with a solid lipid and 9 X 10(5) with fluid lipid and, for trans-PnA, 5 X 10(6) with solid lipid and 1.7 X 10(6) with fluid lipid. Ratios of the solid to the fluid partition coefficients (Kps/f) are 0.6 +/- 0.2 for cis-PnA and 3 +/- 1 for trans-PnA. A phase diagram for codispersions of DPPC and PDPC has been constructed from the measurements of the temperature dependence of the fluorescence quantum yield and polarization of cis-PnA and trans-PnA and their methyl ester derivatives. A simple analysis based on the phase diagram and fluorescence data allows additional calculations of Kps/f's which are determined to be 0.7 +/- 0.2 for the cis probes and 4 +/- 1 for the trans probes. The relative preference of trans-PnA for solid phase lipids and its enhanced quantum yield in solid phase lipids make it sensitive to a few percent solid. The trans probes provide evidence that structural order may persist in dispersions of these phospholipids 10 degrees C or more above their transition temperature. It is concluded that measurements of PnA fluorescence polarization vs. temperature are better suited than measurements of quantum yield vs. temperature for determining phospholipid phase separation.  相似文献   

12.
Comparison of iron-catalyzed DNA and lipid oxidation   总被引:4,自引:0,他引:4  
Lipid and DNA oxidation catalyzed by iron(II) were compared in HEPES and phosphate buffers. Lipid peroxidation was examined in a sensitive liposome system constructed with a fluorescent probe that allowed us to examine the effects of both low and high iron concentrations. With liposomes made from synthetic 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine or from rat liver microsomal lipid, lipid peroxidation increased with iron concentration up to the range of 10--20 microM iron(II), but then rates decreased with further increases in iron concentration. This may be due to the limited amount of lipid peroxides available in liposomes for oxidation of iron(II) to generate equimolar iron(III), which is thought to be important for the initation of lipid peroxidation. Addition of hydrogen peroxide to incubations with 1--10 microM iron(II) decreased rates of lipid peroxidation, whereas addition of hydrogen peroxide to incubations with higher iron concentrations increased rates of lipid peroxidation. Thus, in this liposome system, sufficient peroxide from either within the lipid or from exogenous sources must be present to generate equimolar iron(II) and iron(III). With iron-catalyzed DNA oxidation, hydrogen peroxide always stimulated product formation. Phosphate buffer, which chelates iron but still allows for generation of hydroxyl radicals, inhibited lipid peroxidation but not DNA oxidation. HEPES buffer, which scavenges hydroxyl radicals, inhibited DNA oxidation, whereas lipid peroxidation was unaffected since presumably iron(II) and iron(III) were still available for reaction with liposomes in HEPES buffer.  相似文献   

13.
Skeletal muscle lipid droplet-associated proteins (PLINs) are thought to regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN2 [adipocyte differentiation-related protein (ADRP)] is found only on lipid droplets, while PLIN5 (OXPAT, expressed only in oxidative tissues) is found both on and off the lipid droplet and may be recruited to lipid droplet membranes when needed. Our purpose was to determine whether PLIN5 is recruited to lipid droplets with contraction and to investigate the myocellular location and colocalization of lipid droplets, PLIN2, and PLIN5. Rat solei were isolated, and following a 30-min equilibration period, they were assigned to one of two groups: 1) 30 min of resting incubation and 2) 30 min of stimulation (n = 10 each). Immunofluorescence microscopy was used to determine subcellular content, distribution, and colocalization of lipid droplets, PLIN2, and PLIN5. There was a main effect for lower lipid and PLIN2 content in stimulated compared with rested muscles (P < 0.05). Lipid droplet distribution declined exponentially from the sarcolemma to the fiber center in the rested muscles (P = 0.001, r(2) = 0.99) and linearly in stimulated muscles (slope = -0.0023 ± 0.0006, P < 0.001, r(2) = 0.93). PLIN2 distribution declined exponentially from the sarcolemma to the fiber center in both rested and stimulated muscles (P < 0.0001, r(2) = 0.99 rest; P = 0.0004, r(2) = 0.98 stimulated), while PLIN5 distribution declined linearly (slope = -0.0085 ± 0.0009, P < 0.0001, r(2) = 0.94 rest; slope=-0.0078 ± 0.0010, P = 0.0003, r(2) = 0.91 stimulated). PLIN5-lipid droplets colocalized at rest with no difference poststimulation (P = 0.47; rest r(2) = 0.55 ± 0.02, stimulated r(2) = 0.58 ± 0.03). PLIN2-lipid droplets colocalized at rest with no difference poststimulation (P = 0.48; rest r(2) = 0.66 ± 0.02, stimulated r(2) = 0.65 ± 0.02). Contrary to our hypothesis, these results show that PLIN5 is not recruited to lipid droplets with contraction in isolated skeletal muscle.  相似文献   

14.
Oxygen is necessary for aerobic metabolism but can cause the harmful oxidation of lipids and other macromolecules. Oxidation of cholesterol and phospholipids containing polyunsaturated fatty acyl chains can lead to lipid peroxidation, membrane damage, and cell death. Lipid hydroperoxides are key intermediates in the process of lipid peroxidation. The lipid hydroperoxidase glutathione peroxidase 4 (GPX4) converts lipid hydroperoxides to lipid alcohols, and this process prevents the iron (Fe2+)‐dependent formation of toxic lipid reactive oxygen species (ROS). Inhibition of GPX4 function leads to lipid peroxidation and can result in the induction of ferroptosis, an iron‐dependent, non‐apoptotic form of cell death. This review describes the formation of reactive lipid species, the function of GPX4 in preventing oxidative lipid damage, and the link between GPX4 dysfunction, lipid oxidation, and the induction of ferroptosis.  相似文献   

15.
Lipid-filled macrophages (foam cells) are a defining feature of atherosclerotic plaques. Foam cells contain lipid droplet-associated proteins that in other cell types regulate lipid turnover. In foam cell such proteins may directly affect lipid droplet formation and lipid efflux. Differentiated primary human monocytes or THP-1 cells were lipid loaded by incubation with aggregated low density lipoproteins (AgLDL) or VLDL resulting in macrophage foam cells with predominantly cholesterol ester or triglyceride-rich lipid droplets, respectively. Lipid droplets were isolated and major proteins identified by mass spectrometry, among them the apolipoprotein B-48 receptor that has not previously been recognized in this context. Expression of two proteins, perilipin and adipophilin, was quantified by Western blots of cell lysates. Perilipin content decreased and adipophilin increased with lipoprotein lipid loading regardless of intracellular neutral lipid composition. This protein expression pattern may hinder lipid turnover in macrophage foam cells, thereby increasing lipid content of atherosclerotic plaques.  相似文献   

16.
Polar lipid compositions of seven strains belonging to the four species of the Mesorhizobium genus were described. The lipid patterns of Mesorhizobium strains were very similar. Only quantitative differences were observed. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC) were found to be the major phospholipids of the analysed bacteria. In addition, two methylated derivatives of PE were observed: phosphatidyl-N,N-dimethylethanolamine (DMPE) and phosphatidyl-N-monomethylethanolamine (MMPE). Polar head groups of those phospholipids were predominately acylated with lactobacillic (19:0 cyclopropane) acid. Ornithine-containing lipid (OL) was also identified. 3-hydroxy fatty acids found in the lipid preparations were derived exclusively from the ornithine lipid. 3-hydroxylactobacillic was the main acyl residue amide linked to the ornithine.  相似文献   

17.
P Br?let  H M McConnell 《Biochemistry》1977,16(6):1209-1217
Three different phospholipid haptens have been synthesized, in which the haptenic group is the paramagnetic nitroxide (spin-label) group. These lipid haptens differ from one another in the length and composition of the molecular chain linking the 2,2,6,6-tetramethylpiperidinyl-N-oxy moiety to the phosphodiester group of the lipid. These lipid haptens have been incorporated at low molar concentrations (0.01 to 0.5 mol %) in liposomes containing various proportions of cholesterol and dipalmitoylphosphatidylcholine (DPPC). A study has been made of specific antinitroxide IgG (and Fab) binding to these liposomes, and the fixation of complement. From these studies we conclude: (a) For lipid haptens whose possible extension above the bilayer plane is limited (e.g., approximately 10-20 A), antibody binding and complement fixation depend strongly on the hapten structure and host lipid composition, because of steric limitations on the accessibility of lipid haptens to the binding sites in the protein. (b) Complement fixation by specific IgG antibodies directed against the nitroxide group as part of a lipid hapten depends strongly on the lateral mobility of the lipid hapten when its molar concentration in the plane of the membrane is of the order of 0.1 mol % or less. It is likely that this conclusion applies to many lipid haptens, and possibly other membrane components. (c) The inclusion of cholesterol in lipid membranes has at least two distinct effects on complement fixation involving lipid haptens. Through a steric effect on bilayer structure (probably involving lateral molecular ordering) cholesterol in phosphatidylcholine bilayers can enhance hapten exposure to antibody binding sites, enhance antibody binding, and thereby enhance complement fixation. It is likely that cholesterol also affects complement fixation at low hapten concentrations through a modification of membrane fluidity.  相似文献   

18.
The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.  相似文献   

19.
In pregnant females, placenta is the most important source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides is often linked to preeclampsia. In our study, we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) occurred. In the presence of Fe2+ ion, HPM produced small amounts of thiobarbituric acid-reactive substances (TBARS) – a final product of lipid peroxidation. NADPH caused a strong increase of iron stimulated TBARS formation. TBARS formation was inhibited by superoxide dismutase, butylated hydroxytoluene and α-tocopherol but not by mannitol or catalase. TBARS and superoxide radical production was inhibited in similar manner by cytochrome P450 inhibitors. The results obtained led us to the following conclusions: (1) microsomal lipid peroxidation next to mitochondrial lipid peroxidation may by an important source of lipid hydroperoxides in blood during pregnancy and (2) superoxide radical released by microsomal cytochrome P450 is an important factor in NADPH- and iron-dependent lipid peroxidation in HPM.  相似文献   

20.
The influence of season and gender on lipid content, lipid classes, and fatty acid compositions was assessed in livers of salmon shark (Lamna ditropis), caught in the Pacific Ocean. No significant difference in the hepatosomatic index was noted with season, though the lipid content was significantly higher (P<0.05) in winter. Triacylglycerol (TAG) was identified as the predominant lipid class (78.5-82.0%), followed by sterol esters (5.7-9.1%) and hydrocarbons (3.4-5.4%). No significant differences were observed in TAG composition with respect to the season or gender. However, diacylglyceryl ether contents were significantly higher (P<0.05) in winter (3.8-5.3%) than those obtained in summer (1.3-1.1%). Polyunsaturated fatty acids constituted the major fatty acid class of salmon shark total liver lipid and docosahexaenoic acid (C22:6n-3) (22.7-28.4%) was the most abundant fatty acid which was significantly lower (P<0.05) in winter. These results suggested that lipid characteristics of salmon shark liver were influenced by season, but not by gender.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号