首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The establishment and maintenance of cell polarity is crucial for many biological functions and is regulated by conserved protein complexes. The Par polarity complex consisting of Par3, Par6, and PKCzeta, in conjunction with Tiam1-mediated Rac signaling, controls apical-basal cell polarity in contacting epithelial cells. Here we tested the hypothesis that the Par complex, in conjunction with Tiam1, controls "front-rear" polarity during the persistent migration of freely migrating keratinocytes. RESULTS: Wild-type (WT) epidermal keratinocytes lacking cell-cell contacts are stably front-rear polarized and migrate persistently. In contrast, Tiam1-deficient (Tiam1 KO) and (si)Par3-depleted keratinocytes are generally unpolarized and migrate randomly because front-rear polarity is short lived. Immunoprecipitation experiments show that in migrating keratinocytes, Tiam1 associates with Par3 and PKCzeta. Moreover, Par3, PKCzeta, and Tiam1 proteins are enriched at the leading edges of polarized keratinocytes. Tiam1 KO keratinocytes are impaired in chemotactic migration toward growth factors, whereaes haptotactic migration is similar to WT. Par3 depletion or the blocking of PKCzeta signaling in WT keratinocytes impairs chemotaxis but has no additional effect on Tiam1 KO cells. The migratory and morphological defects in keratinocytes with impaired Par-Tiam1 function closely resemble cells with pharmacologically destabilized microtubules (MTs). Indeed, MTs in Tiam1 KO keratinocytes and WT cells treated with a PKCzeta inhibitor are unstable, thereby negatively influencing directional but not random migration. CONCLUSIONS: We conclude that the Par-Tiam1 complex stabilizes front-rear polarization of noncontacting migratory cells, thereby stimulating persistent and chemotactic migration, whereas in contacting keratinocytes, the same complex controls the establishment of long-lasting apical-basal polarity. These findings underscore a remarkable flexibility of the Par polarity complex that, depending on the biological context, controls distinct forms of cellular polarity.  相似文献   

2.
The GTPases Rac and Cdc42 play a pivotal role in the establishment of cell polarity by stimulating biogenesis of tight junctions (TJs). In this study, we show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis) controls the cell polarity of epidermal keratinocytes. Similar to wild-type (WT) keratinocytes, Tiam1-deficient cells establish primordial E-cadherin-based adhesions, but subsequent junction maturation and membrane sealing are severely impaired. Tiam1 and V12Rac1 can rescue the TJ maturation defect in Tiam1-deficient cells, indicating that this defect is the result of impaired Tiam1-Rac signaling. Tiam1 interacts with Par3 and aPKCzeta, which are two components of the conserved Par3-Par6-aPKC polarity complex, and triggers biogenesis of the TJ through the activation of Rac and aPKCzeta, which is independent of Cdc42. Rac is activated upon the formation of primordial adhesions (PAs) in WT but not in Tiam1-deficient cells. Our data indicate that Tiam1-mediated activation of Rac in PAs controls TJ biogenesis and polarity in epithelial cells by association with and activation of the Par3-Par6-aPKC polarity complex.  相似文献   

3.
Cell polarization is required for virtually all functions of T cells, including transendothelial migration in response to chemokines. However, the molecular pathways that establish T cell polarity are poorly understood. We show that the activation of the partitioning defective (Par) polarity complex is a key event during Rap1- and chemokine-induced T cell polarization. Intracellular localization and activation of the Par complex are initiated by Rap1 and require Cdc42 activity. The Rac activator Tiam1 associates with both Rap1 and components of the Par complex, and thereby may function to connect the Par polarity complex to Rap1 and to regulate the Rac-mediated actin remodelling required for T cell polarization. Consistent with these findings, Tiam1-deficient T cells are impaired in Rap1- and chemokine-induced polarization and chemotaxis. Our studies implicate Tiam1 and the Par polarity complex in polarization of T cells, and provide a mechanism by which chemokines and Rap1 regulate T cell polarization and chemotaxis.  相似文献   

4.
MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3′-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation.  相似文献   

5.
Cell polarity is an essential requirement for the proper tissue development of complex organisms. This is underscored by in vivo studies showing that loss of cell polarity contributes to the formation and progression of tumours. Evolutionary conserved multiprotein complexes, such as the Par3-Par6-aPKC or, in short, the Par polarity complex, regulate the establishment of cell polarity. The small Rho GTPases CDC42 and Rac control the activation of the Par polarity complex. Evidence now implicates the Rac activator Tiam1 as a crucial component of the Par complex in regulating neuronal (axonal) and epithelial (apical-basal) polarity. Our current knowledge places Tiam1 at the centre of a pivotal biological process, the establishment and maintenance of cell polarity, and suggests that deregulation of the Tiam1-Par complex contributes to tumourigenicity.  相似文献   

6.
Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and redox signaling. The activity of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can be modulated by the GTP/GDP state of Rac1; however, the molecular mechanisms of Rac1 activation by flow are poorly understood. Here, we identify a novel polarity complex that directs localized Rac1 activation required for downstream reactive oxygen species (ROS) production. Vav2 is required for Rac1 GTP loading, whereas, surprisingly, Tiam1 functions as an adaptor in a VE-cadherin–p67phox–Par3 polarity complex that directs localized activation of Rac1. Furthermore, loss of Tiam1 led to the disruption of redox signaling both in vitro and in vivo. Our results describe a novel molecular cascade that regulates redox signaling by the coordinated regulation of Rac1 and by linking components of the polarity complex to the NADPH oxidase.  相似文献   

7.
Tiam1 (T-cell lymphoma invasion and metastasis 1) is a guanine nucleotide exchange factor that specifically controls the activity of the small GTPase Rac, a key regulator of cell adhesion, proliferation, and survival. Here, we report that in response to mitogens, Tiam1 is degraded by the ubiquitin-proteasome system via the SCFβTrCP ubiquitin ligase. Mitogenic stimulation triggers the binding of Tiam1 to the F-box protein βTrCP via its degron sequence and subsequent Tiam1 ubiquitylation and proteasomal degradation. The proteolysis of Tiam1 is prevented by βTrCP silencing, inhibition of CK1 and MEK, or mutation of the Tiam1 degron site. Expression of a stable Tiam1 mutant that is unable to interact with βTrCP results in sustained activation of the mTOR/S6K signaling and increased apoptotic cell death. We propose that the SCFβTrCP-mediated degradation of Tiam1 controls the duration of the mTOR-S6K signaling pathway in response to mitogenic stimuli.  相似文献   

8.
Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration.  相似文献   

9.
α6β4 integrin, a component of hemidesmosomes, also plays a role in keratinocyte migration via signaling through Rac1 to the actin-severing protein cofilin. Here, we tested the hypothesis that the β4 integrin-associated plakin protein, bullous pemphigoid antigen 1e (BPAG1e) functions as a scaffold for Rac1/cofilin signal transduction. We generated keratinocyte lines exhibiting a stable knockdown in BPAG1e expression. Knockdown of BPAG1e does not affect expression levels of other hemidesmosomal proteins, nor the amount of β4 integrin expressed at the cell surface. However, the amount of Rac1 associating with β4 integrin and the activity of both Rac1 and cofilin are significantly lower in BPAG1e-deficient cells compared with wild-type keratinocytes. In addition, keratinocytes deficient in BPAG1e exhibit loss of front-to-rear polarity and display aberrant motility. These defects are rescued by inducing expression of constitutively active Rac1 or active cofilin. These data indicate that the BPAG1e is required for efficient regulation of keratinocyte polarity and migration by determining the activation of Rac1.  相似文献   

10.
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.  相似文献   

11.
The Rho-like guanosine triphosphatase Rac1 regulates various signaling pathways, including integrin-mediated adhesion and migration of cells. However, the mechanisms by which integrins signal toward Rac are poorly understood. We show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis 1) is required for the integrin-mediated laminin (LN)-5 deposition, spreading, and migration of keratinocytes. In contrast to wild-type keratinocytes, Tiam1-deficient (Tiam1-/-) keratinocytes are unable to adhere to and spread on a glass substrate because they are unable to deposit their own LN5 substrate. Both Tiam1 and V12Rac1 can rescue the defects of Tiam1-/- keratinocytes, indicating that these deficiencies are caused by impaired Tiam1-mediated Rac activation. Tiam1-/- cells are unable to activate Rac upon alpha3beta1-mediated adhesion to an exogenous LN5 substrate. Moreover, Tiam1 deficiency impairs keratinocyte migration in vitro and reepithelialization of excision wounds in mouse skin. Our studies indicate that Tiam1 is a key molecule in alpha3beta1-mediated activation of Rac, which is essential for proper production and secretion of LN5, a requirement for the spreading and migration of keratinocytes.  相似文献   

12.
We previously demonstrated that both Tiam1, an activator of Rac, and constitutively active V12Rac promote E-cadherin–mediated cell–cell adhesion in epithelial Madin Darby canine kidney (MDCK) cells. Moreover, Tiam1 and V12Rac inhibit invasion of Ras-transformed, fibroblastoid MDCK-f3 cells by restoring E-cadherin–mediated cell–cell adhesion. Here we show that the Tiam1/Rac-induced cellular response is dependent on the cell substrate. On fibronectin and laminin 1, Tiam1/Rac signaling inhibits migration of MDCK-f3 cells by restoring E-cadherin–mediated cell– cell adhesion. On different collagens, however, expression of Tiam1 and V12Rac promotes motile behavior, under conditions that prevent formation of E-cadherin adhesions. In nonmotile cells, Tiam1 is present in adherens junctions, whereas Tiam1 localizes to lamellae of migrating cells. The level of Rac activation by Tiam1, as determined by binding to a glutathione-S-transferase– PAK protein, is similar on fibronectin or collagen I, suggesting that rather the localization of the Tiam1/Rac signaling complex determines the substrate-dependent cellular responses. Rac activation by Tiam1 requires PI3-kinase activity. Moreover, Tiam1- but not V12Rac-induced migration as well as E-cadherin–mediated cell– cell adhesion are dependent on PI3-kinase, indicating that PI3-kinase acts upstream of Tiam1 and Rac.  相似文献   

13.
A polarity complex of PAR-3, PAR-6 and atypical protein kinase C (aPKC) functions in various cell-polarization events, including neuron specification. The small GTPase Cdc42 binds to PAR-6 and regulates cell polarity. However, little is known about the downstream signals of the Cdc42-PAR protein complex. Here, we found that PAR-3 directly interacted with STEF/Tiam1, which are Rac-specific guanine nucleotide-exchange factors, and that STEF formed a complex with PAR-3-aPKC-PAR-6-Cdc42-GTP. Cdc42 induces lamellipodia in a Rac-dependent manner in N1E-115 neuroblastoma cells. Disruption of Cdc42-PAR-6 or PAR-3-STEF binding inhibited Cdc42-induced lamellipodia but not filopodia. The isolated STEF-binding PAR-3 fragment was sufficient to induce lamellipodia independently of Cdc42 and PAR-6. PAR-3 is required for Cdc42-induced Rac activation, but is not essential for lamellipodia formation itself. In cultured hippocampal neurons, STEF accumulated at the tip of the growing axon and colocalized with PAR-3. The spatio-temporal activation and signalling of Cdc42-PAR-6-PAR-3-STEF/Tiam1-Rac seem to be involved in neurite growth and axon specification. We propose that the PAR-6-PAR-3 complex mediates Cdc42-induced Rac activation by means of STEF/Tiam1, and that this process seems to be required for the establishment of neuronal polarity.  相似文献   

14.
RhoA and Rac1 have been implicated in the mechanism of CCK-induced amylase secretion from pancreatic acini. In all cell types studied to date, inactive Rho GTPases are present in the cytosol bound to the guanine nucleotide dissociation inhibitor RhoGDI. Here, we identified the switch mechanism regulating RhoGDI1-Rho GTPase dissociation and RhoA translocation upon CCK stimulation in pancreatic acini. We found that both Gα13 and PKC, independently, regulate CCK-induced RhoA translocation and that the PKC isoform involved is PKCα. Both RhoGDI1 and RhoGDI3, but not RhoGDI2, are expressed in pancreatic acini. Cytosolic RhoA and Rac1 are associated with RhoGDI1, and CCK-stimulated PKCα activation releases the complex. Overexpression of RhoGDI1, by binding RhoA, inhibits its activation, and thereby, CCK-induced apical amylase secretion. RhoA translocation is also inhibited by RhoGDI1. Inactive Rac1 influences CCK-induced RhoA activation by preventing RhoGDI1 from binding RhoA. By mutational analysis we found that CCK-induced PKCα phosphorylation on RhoGDI1 at Ser96 releases RhoA and Rac1 from RhoGDI1 to facilitate Rho GTPases signaling.  相似文献   

15.
Phosphatidylinositol-4,5-bisphosphate (PI4,5P2) is a critical regulator of cell migration, but the roles of the type I phosphatidylinositol-4-phosphate 5-kinases (PIPKIs), which synthesize PI4,5P2, have yet to be fully defined in this process. In this study, we report that one kinase, PIPKI-α, is a novel upstream regulator of Rac1 that links activated integrins to the regulation of cell migration. We show that PIPKI-α controls integrin-induced translocation of Rac1 to the plasma membrane and thereby regulates Rac1 activation. Strikingly, this function is not shared with other PIPKI isoforms, is independent of catalytic activity, and requires physical interaction of PIPKI-α with the Rac1 polybasic domain. Consistent with its role in Rac1 activation, depletion of PIPKI-α causes pronounced defects in membrane ruffling, actin organization, and focal adhesion formation, and ultimately affects the directional persistence of migration. Thus, our study defines the role of PIPKI-α in cell migration and describes a new mechanism for the spatial regulation of Rac1 activity that is critical for cell migration.  相似文献   

16.
Fibroblast growth factor 2 (FGF2) is a major regulator of developmental, pathological, and therapeutic angiogenesis. Its activity is partially mediated by binding to syndecan 4 (S4), a proteoglycan receptor. Angiogenesis requires polarized activation of the small guanosine triphosphatase Rac1, which involves localized dissociation from RhoGDI1 and association with the plasma membrane. Previous work has shown that genetic deletion of S4 or its adapter, synectin, leads to depolarized Rac activation, decreased endothelial migration, and other physiological defects. In this study, we show that Rac1 activation downstream of S4 is mediated by the RhoG activation pathway. RhoG is maintained in an inactive state by RhoGDI1, which is found in a ternary complex with synectin and S4. Binding of S4 to synectin increases the latter''s binding to RhoGDI1, which in turn enhances RhoGDI1''s affinity for RhoG. S4 clustering activates PKCα, which phosphorylates RhoGDI1 at Ser96. This phosphorylation triggers release of RhoG, leading to polarized activation of Rac1. Thus, FGF2-induced Rac1 activation depends on the suppression of RhoG by a previously uncharacterized ternary S4–synectin–RhoGDI1 protein complex and activation via PKCα.  相似文献   

17.
The invasion-inducing T-lymphoma invasion and metastasis 1 (Tiam1) protein functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. Differentiation-dependent expression of Tiam1 in the developing brain suggests a role for this GEF and its effector Rac1 in the control of neuronal morphology. Here we show that overexpression of Tiam1 induces cell spreading and affects neurite outgrowth in N1E-115 neuroblastoma cells. These effects are Rac-dependent and strongly promoted by laminin. Overexpression of Tiam1 recruits the α6β1 integrin, a laminin receptor, to specific adhesive contacts at the cell periphery, which are different from focal contacts. Cells overexpressing Tiam1 no longer respond to lysophosphatidic acid– induced neurite retraction and cell rounding, processes mediated by Rho, suggesting that Tiam1-induced activation of Rac antagonizes Rho signaling. This inhibition can be overcome by coexpression of constitutively active RhoA, which may indicate that regulation occurs at the level of Rho or upstream. Conversely, neurite formation induced by Tiam1 or Rac1 is further promoted by inactivating Rho. These results demonstrate that Rac- and Rho-mediated pathways oppose each other during neurite formation and that a balance between these pathways determines neuronal morphology. Furthermore, our data underscore the potential role of Tiam1 as a specific regulator of Rac during neurite formation and illustrate the importance of reciprocal interactions between the cytoskeleton and the extracellular matrix during this process.  相似文献   

18.
Lysophosphatidic acid (LPA) is a serum-borne phospholipid that activates its own G protein-coupled receptors present in numerous cell types. In addition to stimulating cell proliferation, LPA also induces cytoskeletal changes and promotes cell migration in a RhoA- and Rac-dependent manner. Whereas RhoA is activated via Galpha(12/13)-linked Rho-specific guanine nucleotide exchange factors, it is unknown how LPA receptors may signal to Rac. Here we report that the prototypic LPA(1) receptor (previously named Edg2), when expressed in B103 neuroblastoma cells, mediates transient activation of RhoA and robust, prolonged activation of Rac leading to cell spreading, lamellipodia formation, and stimulation of cell migration. LPA-induced Rac activation is inhibited by pertussis toxin and requires phosphoinositide 3-kinase activity. Strikingly, LPA fails to activate Rac in cell types that lack the Rac-specific exchange factor Tiam1; however, enforced expression of Tiam1 restores LPA-induced Rac activation in those cells. Tiam1-deficient cells show enhanced RhoA activation, stress fiber formation, and cell rounding in response to LPA, consistent with Tiam1/Rac counteracting RhoA. We conclude that LPA(1) receptors couple to a G(i)-phosphoinositide 3-kinase-Tiam1 pathway to activate Rac, with consequent suppression of RhoA activity, and thereby stimulate cell spreading and motility.  相似文献   

19.
Using a microchannel assay, we demonstrate that cells adopt distinct signaling strategies to modulate cell migration in different physical microenvironments. We studied α4β1 integrin–mediated signaling, which regulates cell migration pertinent to embryonic development, leukocyte trafficking, and melanoma invasion. We show that α4β1 integrin promotes cell migration through both unconfined and confined spaces. However, unlike unconfined (2D) migration, which depends on enhanced Rac1 activity achieved by preventing α4/paxillin binding, confined migration requires myosin II–driven contractility, which is increased when Rac1 is inhibited by α4/paxillin binding. This Rac1–myosin II cross talk mechanism also controls migration of fibroblast-like cells lacking α4β1 integrin, in which Rac1 and myosin II modulate unconfined and confined migration, respectively. We further demonstrate the distinct roles of myosin II isoforms, MIIA and MIIB, which are primarily required for confined and unconfined migration, respectively. This work provides a paradigm for the plasticity of cells migrating through different physical microenvironments.  相似文献   

20.
The Rac1/JNK cascade plays important roles in DNA damage-induced apoptosis. However, how this cascade is activated upon DNA damage remains to be fully understood. We show here that, in untreated cells, Tiam1, a Rac1-specific guanine nucleotide exchange factor, is phosphorylated by casein kinase 1 (CK1) at its C terminus, leading to Skp, Cullin, F-box-containingβ-TrCP recognition, ubiquitination, and proteasome-mediated degradation. Upon DNA-damaging anticancer drug treatment, CK1/β-TrCP-mediated Tiam1 degradation is abolished, and the accumulated Tiam1 contributes to downstream activation of Rac1/JNK. Consistently, tumor cells overexpressing Tiam1 are hypersensitive to DNA-damaging drug treatment. In xenograft mice, Tiam1-high cells are more susceptible to doxorubicin treatment. Thus, our results uncover that inhibition of proteasome-mediated Tiam1 degradation is an upstream event leading to Rac1/JNK activation and cell apoptosis in response to DNA-damaging drug treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号