首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Susceptibility to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) varies greatly among patients in sepsis/septic shock. The genetic and biochemical reasons for the difference are not fully understood. G protein coupled receptor family C group 5 member A (GPRC5A), a retinoic acid target gene, is predominately expressed in the bronchioalveolar epithelium of lung. We hypothesized that Gprc5a is important in controlling the susceptibility to ALI or ARDS. In this study, we examined the susceptibility of wild-type and Gprc5a-knockout (ko) mice to induced ALI. Administration of endotoxin LPS induced an increased pulmonary edema and injury in Gprc5a-ko mice, compared to wild-type counterparts. Consistently, LPS administration induced higher levels of inflammatory cytokines (IL-1β and TNFα) and chemokine (KC) in Gprc5a-ko mouse lungs than in wild-type. The enhanced pulmonary inflammatory responses were associated with dysregulated NF-κB signaling in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs. Importantly, selective inhibition of NF-κB through expression of the super-repressor IκBα in the bronchioalveolar epithelium of Gprc5a-ko mouse lungs alleviated the LPS-induced pulmonary injury, and inflammatory response. Thus, Gprc5a is critical for lung homeostasis, and Gprc5a deficiency confers the susceptibility to endotoxin-induced pulmonary edema and injury, mainly through NF-κB signaling in bronchioalveolar epithelium of lung.  相似文献   

2.
Acute respiratory distress syndrome/acute lung injury (ARDS/ALI) is histologically characterized by extensive alveolar barrier disruption and excessive fibroproliferation responses. Protectin DX (PDX) displays anti‐inflammatory and potent inflammation pro‐resolving actions. We sought to investigate whether PDX attenuates LPS (lipopolysaccharide)‐induced lung injury via modulating epithelial cell injury repair, apoptosis and fibroblasts activation. In vivo, PDX was administered intraperitoneally (IP) with 200 ng/per mouse after intratracheal injection of LPS, which remarkedly stimulated proliferation of type II alveolar epithelial cells (AT II cells), reduced the apoptosis of AT II cells, which attenuated lung injury induced by LPS. Moreover, primary type II alveolar cells were isolated and cultured to assess the effects of PDX on wound repair, apoptosis, proliferation and transdifferentiation in vitro. We also investigated the effects of PDX on primary rat lung fibroblast proliferation and myofibroblast differentiation. Our result suggests PDX promotes primary AT II cells wound closure by inducing the proliferation of AT II cells and reducing the apoptosis of AT II cells induced by LPS, and promotes AT II cells transdifferentiation. Furthermore, PDX inhibits transforming growth factor‐β1 (TGF‐β1) induced fibroproliferation, fibroblast collagen production and myofibroblast transformation. Furthermore, the effects of PDX on epithelial wound healing and proliferation, fibroblast proliferation and activation partly via the ALX/ PI3K signalling pathway. These data present identify a new mechanism of PDX which targets the airway epithelial cell and fibroproliferation are potential for treatment of ARDS/ALI.  相似文献   

3.
4.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a kind of diffuse inflammatory injury caused by various factors, characterized by respiratory distress and progressive hypoxemia. It is a common clinical critical illness. The aim of this study was to investigate the effect and mechanism of the Mucin1 (MUC1) gene and its recombinant protein on lipopolysaccharide (LPS)-induced ALI/ARDS. We cultured human alveolar epithelial cell line (BEAS-2B) and used MUC1 overexpression lentivirus to detect the effect of MUC1 gene on BEAS-2B cells. In addition, we used LPS to induce ALI/ARDS in C57/BL6 mice and use hematoxylin and eosin (H&E) staining to verify the effect of their modeling. Recombinant MUC1 protein was injected subcutaneously into mice. We examined the effect of MUC1 on ALI/ARDS in mice by detecting the expression of inflammatory factors and oxidative stress molecules in mouse lung tissue, bronchoalveolar lavage fluid (BALF) and serum. Overexpression of MUC1 effectively ameliorated LPS-induced damage to BEAS-2B cells. Results of H&E staining indicate that LPS successfully induced ALI/ARDS in mice and MUC1 attenuated lung injury. MUC1 also reduced the expression of inflammatory factors (IL-1β, TNF-α, IL-6 and IL-8) and oxidative stress levels in mice. In addition, LPS results in an increase in the activity of the TLR4/NF-κB signaling pathway in mice, whereas MUC1 decreased the expression of the TLR4/NF-κB signaling pathway. MUC1 inhibited the activity of TLR4/NF-κB signaling pathway and reduced the level of inflammation and oxidative stress in lung tissue of ALI mice.Key words: Mucin1, acute lung injury, inflammation, oxidative stress, TLR4/NF-κB  相似文献   

5.

Background

Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response.

Methods

Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.

Results

MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.

Conclusions

Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.  相似文献   

6.
7.
Excessive pulmonary inflammatory response is critical in the development of acute lung injury (ALI). Previously, microRNAs (miRNAs) have been recognized as an important regulator of inflammation in various diseases. However, the effects and mechanisms of miRNAs on inflammatory response in ALI remain unclear. Herein, we tried to screen miRNAs in the processes of ALI and elucidate the potential mechanism. Using a microarray assay, microRNA let-7e (let-7e) was chose as our target for its reported suppressive roles in several inflammatory diseases. Down-regulation of let-7e by antagomiR-let-7e injection attenuated LPS-induced acute lung injury. We also found that antagomiR-let-7e could obviously improve the survival rate in ALI mice. Moreover, antagomiR-let-7e treatment reduced the production of proinflammatory cytokines (i.e., TNF-α, IL-1β and IL-6) in bronchoalveolar lavage fluid (BALF) of LPS-induced ALI mice. Luciferase reporter assays confirmed that suppressor of cytokine signaling 1 (SOCS1), a powerful attenuator of nuclear factor kappa B (NF-κB) signaling pathway, was directly targeted and suppressed by let-7e in RAW264.7 cells. In addition, it was further observed that SOCS1 was down-regulated, and inversely correlated with let-7e expression levels in lung tissues of ALI mice. Finally, down-regulation of let-7e suppressed the activation of NF-κB pathway, as evidenced by the reduction of p-IκBα, and nuclear p-p65 expressions in ALI mice. Collectively, our findings indicate that let-7e antagomir protects mice against LPS-induced lung injury via repressing the pulmonary inflammation though regulation of SOCS1/NF-κB pathway, and let-7e may act as a potential therapeutic target for ALI.  相似文献   

8.
Many common diseases of the gas exchange surface of the lung have no specific treatment but cause serious morbidity and mortality. Idiopathic Pulmonary Fibrosis (IPF) is characterized by alveolar epithelial cell injury, interstitial inflammation, fibroblast proliferation and collagen accumulation within the lung parenchyma. Keratinocyte Growth Factor (KGF, also known as FGF-7) is a critical mediator of pulmonary epithelial repair through stimulation of epithelial cell proliferation. During repair, the lung not only uses resident cells after injury but also recruits circulating bone marrow-derived cells (BMDC). Several groups have used Mesenchymal Stromal Cells (MSCs) as therapeutic vectors, but little is known about the potential of Hematopoietic Stem cells (HSCs). Using an inducible lentiviral vector (Tet-On) expressing KGF, we were able to efficiently transduce both MSCs and HSCs, and demonstrated that KGF expression is induced in a regulated manner both in vitro and in vivo. We used the in vivo bleomycin-induced lung fibrosis model to assess the potential therapeutic effect of MSCs and HSCs. While both populations reduced the collagen accumulation associated with bleomycin-induced lung fibrosis, only transplantation of transduced HSCs greatly attenuated the histological damage. Using double immunohistochemistry, we show that the reduced lung damage likely occurs through endogenous type II pneumocyte proliferation induced by KGF. Taken together, our data indicates that bone marrow transplantation of lentivirus-transduced HSCs can attenuate lung damage, and shows for the first time the potential of using an inducible Tet-On system for cell based gene therapy in the lung.  相似文献   

9.
Adiponectin (APN) is an adipose tissue-derived factor with anti-inflammatory and vascular protective properties whose levels paradoxically decrease with increasing body fat. In this study, APN's role in the early development of ALI to LPS was investigated. Intratracheal LPS elicited an exaggerated systemic inflammatory response in APN-deficient (APN(-/-)) mice compared with wild-type (wt) littermates. Increased lung injury and inflammation were observed in APN(-/-) mice as early as 4 h after delivery of LPS. Targeted gene expression profiling performed on immune and endothelial cells isolated from lung digests 4 h after LPS administration showed increased proinflammatory gene expression (e.g., IL-6) only in endothelial cells of APN(-/-) mice when compared with wt mice. Direct effects on lung endothelium were demonstrated by APN's ability to inhibit LPS-induced IL-6 production in primary human endothelial cells in culture. Furthermore, T-cadherin-deficient mice that have significantly reduced lung airspace APN but high serum APN levels had pulmonary inflammatory responses after intratracheal LPS that were similar to those of wt mice. These findings indicate the importance of serum APN in modulating LPS-induced ALI and suggest that conditions leading to hypoadiponectinemia (e.g., obesity) predispose to development of ALI through exaggerated inflammatory response in pulmonary vascular endothelium.  相似文献   

10.
Lactobacillus has been reported to inhibit acute lung injury (ALI). However, the molecular mechanism of Lactobacillus casei (L. casei) in preventing ALI has not been identified, so we investigated whether L. casei pretreatment could inhibit the activation of TLR4/MyD88/NF-κB signaling pathway following ALI. ALI model was established by intraperitoneal injection of 2 mg/kg lipopolysaccharide (LPS) to female BALB/c mice. In L. casei LC2W group, mice were intragastrically administrated L. casei LC2W for a week, before the ALI modeling. The serum of normal BALB/c mice after intragastric administration of L. casei LC2W was used for in vitro cell assays. The serum was pre-incubated with mouse macrophage cell line (RAW264.7) and human lung cell line (HLF-A), then LPS was added to co-incubate. Compared with ALI model group, L. casei LC2W pretreatment significantly reduced lung pathological damage, the number of neutrophils and total cells in bronchoalveolar lavage fluid. Besides, L. casei LC2W pretreatment could significantly reverse the abnormal expression of ICAM-1, IL-6, TNF-α and IL-10 in lung tissue and serum, plus, L. casei LC2W significantly reduced the phosphorylation levels of IRAK-1 and NF-κB p65. In vitro, the serum decreased the up-regulation of IL-6 and TNF-α in cell lines induced by LPS. In conclusion, L. casei LC2W intragastric administration pretreatment could significantly improve LPS-induced ALI in mice, probably through circulation to reach the lungs so as to inhibit the inflammatory response induced by activation of TLR4/MyD88/NF-κB signaling pathway.  相似文献   

11.
Trichinella spiralis represents an effective treatment for autoimmune and inflammatory diseases. The effects of recombinant T. spiralis (TS) 53-kDa protein (rTsP53) on acute lung injury (ALI) remain unclear. Here, mice were divided randomly into a control group, LPS group, and rTsP53 + LPS group. ALI was induced in BALB/c mice by LPS (10 mg/kg) injected via the tail vein. rTsP53 (200 µl; 0.4 μg/μl) was injected subcutaneously three times at an interval of 5 d before inducing ALI in the rTsP53+LPS group. Lung pathological score, the ratio and markers of classic activated macrophages (M1) and alternatively activated macrophages (M2), cytokine profiles in alveolar lavage fluid, and pyroptosis protein expression in lung tissue were investigated. RTsP53 decreased lung pathological score. Furthermore, rTsP53 suppressed inflammation by increasing IL-4, IL-10, and IL-13. There was an increase in alveolar M2 macrophage numbers, with an increase in CD206 and arginase-1-positive cells and a decrease in alveolar M1 markers such as CD197 and iNOS. In addition, the polarization of M2 macrophages induced by rTsP53 treatment could alleviate ALI by suppressing lung pyroptosis. RTsP53 was identified as a potential agent for treating LPS-induced ALI via alleviating lung pyroptosis by promoting M2 macrophage polarization.  相似文献   

12.
Resuscitated hemorrhagic shock is believed to promote the development of acute lung injury (ALI) by priming the immune system for an exaggerated inflammatory response to a second trivial stimulus. This work explored effects of TLR4 on hemorrhage-induced ALI and “second-hit” responses, and further explore the mechanisms involved in “second-hit” responses. Expression of HO-1, IL-10, lung W/D and MPO markedly increased at nearly all time-points examined in HSR/LPS group as compared with sham/LPS group in WT mice. In HSR/LPS mice, the induced amount of IL-10 and the expressions of HO-1 of WT mice were significantly higher compared with TLR-4d/d. This study provides in vivo evidence that pulmonary infections after LPS instillation contribute to local tissue release of pro-inflammatory mediators after HSR systemic. Activation of TLR4 might induce HO-1 expression and HO-1 modulates proinflammatory responses that are triggered via TLR4 signaling.  相似文献   

13.
14.
Excessive inflammatory response induced by lipopolysaccharide (LPS) plays a critical role in the development of acute lung injury (ALI). Paralemmin-3 (PALM3) is a novel protein that can modulate LPS-stimulated inflammatory responses in alveolar epithelial A549 cells. However, it remains unclear whether it is involved in the progression of ALI in vivo. Therefore, we studied the role of PALM3 in the pathogenesis of ALI induced by LPS. ALI was induced by LPS peritoneal injection in C57BL/6J mice. Lentivirus-mediated small interfering RNA (siRNA) targeting the mouse PALM3 gene and a negative control siRNA were intranasally administered to the mice. We found that the expression of PALM3 was up-regulated in the lung tissues obtained from the mouse model of LPS-induced ALI. The LPS-evoked inflammatory response (neutrophils and the concentrations of proinflammatory cytokines [IL-6, IL-1β, TNF-α, MIP-2] in the bronchoalveolar lavage fluid [BALF]), histologic lung injury (lung injury score), permeability of the alveolar capillary barrier (lung wet/dry weight ratio and BALF protein concentration) and mortality rates were attenuated in the PALM3 siRNA-treated mice. These results indicate that PALM3 contributes to the development of ALI in mice challenged with LPS. Inhibiting PALM3 through the intranasal application of specific siRNA protected against LPS-induced ALI.  相似文献   

15.
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a clinical complication caused by primary or secondary lung injury, as well as by systemic inflammation. Researches regarding molecular pathophysiology of ALI/ARDS are immerging with an ultimate aim towards developing prognostic molecular biomarkers and molecule-based therapy. However, the molecular mechanisms concerning ALI/ARDS are still not completely understood. The purpose of the present study was to identify a crucial role of CCN1 in inflammatory microenvironment during ALI/ARDS and focus on a potential communication between CCN1 and interleukin-6 (IL-6) in the airway epithelial cells. Our data illustrated that the expression levels of CCN1 and IL-6 in bronchoalveolar lavage fluid (BALF) in a lipopolysaccharide (LPS)-induced ALI mouse model were significantly elevated and the pulmonary expression of CCN1 was restricted to bronchial epithelial cells. Interestingly, both endogenous and exogenous CCN1 stimulated IL-6 production in vitro. Furthermore, LPS-induced IL-6 production in a bronchial epithelial cell line was blocked by CCN siRNA whereas CCN1 induced by LPS was sensitive to PI3K inhibition. Together, our data indicate a linear signal pathway, LPS-CCN1-IL-6, existing in bronchial epithelial cells after LPS exposure. This finding may represent an additional mechanism and a novel target for development of therapy and biomarker on ALI/ARDS.  相似文献   

16.
Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.  相似文献   

17.
ObjectivesAcute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in‐depth study.Materials and methodsWe evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)‐induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry.ResultsMesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small‐intestinal lymphocytes and Peyer''s patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect.ConclusionsThe present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS‐induced ALI.  相似文献   

18.

Introduction

Acute kidney injury (AKI) and acute lung injury (ALI) are serious complications of sepsis. AKI is often viewed as a late complication of sepsis. Notably, the onset of AKI relative to ALI is unclear as routine measures of kidney function (BUN and creatinine) are insensitive and increase late. In this study, we hypothesized that AKI and ALI would occur simultaneously due to a shared pathophysiology (i.e., TNF-α mediated systemic inflammatory response syndrome [SIRS]), but that sensitive markers of kidney function would be required to identify AKI.

Methods

Sepsis was induced in adult male C57B/6 mice with 5 different one time doses of intraperitoneal (IP) endotoxin (LPS) (0.00001, 0.0001, 0.001, 0.01, or 0.25 mg) or cecal ligation and puncture (CLP). SIRS was assessed by serum proinflammatory cytokines (TNF-α, IL-1β, CXCL1, IL-6), ALI was assessed by lung inflammation (lung myeloperoxidase [MPO] activity), and AKI was assessed by serum creatinine, BUN, and glomerular filtration rate (GFR) (by FITC-labeled inulin clearance) at 4 hours. 20 µgs of TNF-α antibody (Ab) or vehicle were injected IP 2 hours before or 2 hours after IP LPS.

Results

Serum cytokines increased with all 5 doses of LPS; AKI and ALI were detected within 4 hours of IP LPS or CLP, using sensitive markers of GFR and lung inflammation, respectively. Notably, creatinine did not increase with any dose; BUN increased with 0.01 and 0.25 mg. Remarkably, GFR was reduced 50% in the 0.001 mg LPS dose, demonstrating that dramatic loss of kidney function can occur in sepsis without a change in BUN or creatinine. Prophylactic TNF-α Ab reduced serum cytokines, lung MPO activity, and BUN; however, post-sepsis administration had no effect.

Conclusions

ALI and AKI occur together early in the course of sepsis and TNF-α plays a role in the early pathogenesis of both.  相似文献   

19.
20.
Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a physiological role for GABABR2 in the repair process of lung damage. GABABR2 agonists may play a potential therapeutic role in ALI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号