首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Members of the orthodenticle (otd/Otx) and empty spiracles (ems/Emx) gene families are head gap genes that encode homeodomain-containing DNA-binding proteins. Although numerous studies show their central role in developmental processes in brain specification, a surprisingly high number of other developmental processes have been shown to involve their expression. In this paper, we report the identification and expression of ems and otd in two chelicerate species: a scorpion, Euscorpius flavicaudis (Chactidae, Scorpiona, Arachnida, Euchelicerata) and a spider, Tegenaria saeva (Aranea, Arachnida, Euchelicerata). We show that both ems and otd are expressed not only in an anterior head domain but also along the entire anterior–posterior axis during embryonic development. The expression patterns for both genes are typically segmental and concern neurectodermal territories. During patterning of the opisthosoma, ems and otd are expressed in the lateral ectoderm just anterior to the limb bud primordia giving rise to respiratory organs and spinnerets (spider). This common pattern found in two divergent species thus appears to be a conserved character of chelicerates. These results are discussed in terms of evolutionary origin of respiratory organs and/or functional pathway recruitment.  相似文献   

2.
3.
4.
5.
6.
The head gap genes orthodenticle (otd), empty spiracles (ems) and buttonhead (btd) are required for metamerization and segment specification in Drosophila. We asked whether the function of their orthologs is conserved in the red flour beetle Tribolium castaneum which in contrast to Drosophila develops its larval head in a way typical for insects. We find that depending on dsRNA injection time, two functions of Tc-orthodenticle1 (Tc-otd1) can be identified. The early regionalization function affects all segments formed during the blastoderm stage while the later head patterning function is similar to Drosophila. In contrast, both expression and function of Tc-empty spiracles (Tc-ems) are restricted to the posterior part of the ocular and the anterior part of the antennal segment and Tc-buttonhead (Tc-btd) is not required for head cuticle formation at all. We conclude that the gap gene like roles of ems and btd are not conserved while at least the head patterning function of otd appears to be similar in fly and beetle. Hence, the ancestral mode of insect head segmentation remains to be discovered. With this work, we establish Tribolium as a model system for arthropod head development that does not suffer from the Drosophila specific problems like head involution and strongly reduced head structures.  相似文献   

7.
Johnson MA  Banks MA 《Gene》2011,485(1):16-21
Salmon utilize olfactory cues to guide natal stream homing during spawning migrations. Both inorganic and biogenic chemicals have been proposed as odorants that might be used by salmon during homing. In this study, we used genomic DNA sequence data from nine salmonid species to compare nucleotide identities for orthologous main olfactory receptor (mOR) genes with nucleotide identities for orthologous vomeronasal type 1-like (ora) receptor genes. We found that orthologs for both classes of olfactory receptor genes (mORs and Oras) appear to be highly conserved among species. Our findings do not support the differential tuning hypothesis in Salmonidae, which predicts higher sequence conservation for mORs than ora. We did, however, find convincing evidence for site-specific positive selection acting on paralogous main olfactory receptor genes.  相似文献   

8.
In the former part of the review the principal available data aboutHox genes, their molecular organisation and their expression in vertebrate embryos, with particular emphasis for mammals, are briefly summarized.In the latter part we analysed the expression of four mouse homeobox genes related to twoDrosophila genes expressed in the developing head of the fly: Emx1 and Emx2, related toems, and Otx1 and Otx2, related tootd.  相似文献   

9.
10.
Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.  相似文献   

11.
Gene targeting techniques have led to the phenotypic characterization of numerous genes; however, many genes show minimal to no phenotypic consequences when disrupted, despite many having highly conserved sequences. The standard explanation for these findings is functional redundancy. A competing hypothesis is that these genes have important ecological functions in natural environments that are not needed under laboratory settings. Here we discriminate between these hypotheses by competing mice (Mus musculus) whose Hoxb1 gene has been replaced by Hoxa1, its highly conserved paralog, against matched wild-type controls in seminatural enclosures. This Hoxb1A1 swap was reported as a genetic manipulation resulting in no discernible embryonic or physiological phenotype under standard laboratory tests. We observed a transient decline in first litter size for Hoxb1A1 homozygous mice in breeding cages, but their fitness was consistently and more dramatically reduced when competing against controls within seminatural populations. Specifically, males homozygous for the Hoxb1A1 swap acquired 10.6% fewer territories and the frequency of the Hoxb1A1 allele decreased from 0.500 in population founders to 0.419 in their offspring. The decrease in Hoxb1A1 frequency corresponded with a deficiency of both Hoxb1A1 homozygous and heterozygous offspring. These data suggest that Hoxb1 and Hoxa1 are more phenotypically divergent than previously reported and support that sub- and/or neofunctionalization has occurred in these paralogous genes leading to a divergence of gene function and incomplete redundancy. Furthermore, this study highlights the importance of obtaining fitness measures of mutants in ecologically relevant conditions to better understand gene function and evolution.  相似文献   

12.
Tomato Yellow Leaf Curl China virus spreads together with its invasive vector, the silverleaf whitefly B biotype, which exhibits higher growth rates on infected plants. Previous studies indicate that the virus satellite gene βC1 accounts for the visible symptoms of infection and inhibits the constitutive expression of jasmonic acid (JA)—a phytohormone involved in plant defense against whiteflies—and of some JA-regulated genes. Here we present new details of the effects of on plant signaling and defense, obtained with (non-host) transgenic Arabidopsis thaliana and Nicotiana benthamiana plants. We found that JA induction in response to wounding was reduced in plants expressing βC1. This result implies that βC1 acts on conserved plant regulation mechanisms and might impair the entire JA defense pathway. Furthermore, transformed N. benthamiana plants exhibited elevated emissions of the volatile compound linalool, suggesting that βC1 also influences plant-derived olfactory cues available to vector and non-vector insects.  相似文献   

13.
14.
The olfactory system has the unusual capacity to generate new neurons throughout the lifetime of an organism. Olfactory stem cells in the basal portion of the olfactory epithelium continuously give rise to new sensory neurons that extend their axons into the olfactory bulb, where they face the challenge to integrate into existing circuitry. Because of this particular feature, the olfactory system represents a unique opportunity to monitor axonal wiring and guidance, and to investigate synapse formation. Here we describe a procedure for in vivo labeling of sensory neurons and subsequent visualization of axons in the olfactory system of larvae of the amphibian Xenopus laevis. To stain sensory neurons in the olfactory organ we adopt the electroporation technique. In vivo electroporation is an established technique for delivering fluorophore-coupled dextrans or other macromolecules into living cells. Stained sensory neurons and their axonal processes can then be monitored in the living animal either using confocal laser-scanning or multiphoton microscopy. By reducing the number of labeled cells to few or single cells per animal, single axons can be tracked into the olfactory bulb and their morphological changes can be monitored over weeks by conducting series of in vivo time lapse imaging experiments. While the described protocol exemplifies the labeling and monitoring of olfactory sensory neurons, it can also be adopted to other cell types within the olfactory and other systems.  相似文献   

15.
16.
17.
18.
PCR probing of the genome of Campylobacter jejuni strain X using conserved capsular polysaccharide (CPS)-related genes allowed elucidation of a complete sequence of the respective gene cluster (cps). This is the largest known Campylobacter cps cluster (38 kb excluding flanking kps regions), which includes a number of genes not detected in other Campylobacter strains. Sequence analysis suggests genetic rearrangements both within and outside the cps gene cluster, a mechanism which may be responsible for mosaic organisation of sugar transferase-related genes leading to structural variability of the capsular polysaccharide (CPS).  相似文献   

19.
miRNAs are an important class of regulators that play roles in cellular homeostasis and disease. Muscle-specific miRNAs, miR-1-1 and miR-1-2, have been found to play important roles in regulating cell proliferation and cardiac function. Redundancy between miR-1-1 and miR-1-2 has previously impeded a full understanding of their roles in vivo. To determine how miR-1s regulate cardiac function in vivo, we generated mice lacking miR-1-1 and miR-1-2 without affecting nearby genes. miR-1 double knockout (miR-1 dKO) mice were viable and not significantly different from wild-type controls at postnatal day 2.5. Thereafter, all miR-1 dKO mice developed dilated cardiomyopathy (DCM) and died before P17. Massively parallel sequencing showed that a large portion of upregulated genes after deletion of miR-1s is associated with the cardiac fetal gene program including cell proliferation, glycolysis, glycogenesis, and fetal sarcomere-associated genes. Consistent with gene profiling, glycogen content and glycolytic rates were significantly increased in miR-1 dKO mice. Estrogen-related Receptor β (Errβ) was identified as a direct target of miR-1, which can regulate glycolysis, glycogenesis, and the expression of sarcomeric proteins. Cardiac-specific overexpression of Errβ led to glycogen storage, cardiac dilation, and sudden cardiac death around 3-4 weeks of age. We conclude that miR-1 and its primary target Errβ act together to regulate the transition from prenatal to neonatal stages by repressing the cardiac fetal gene program. Loss of this regulation leads to a neonatal DCM.  相似文献   

20.
Changes in dopamine (DA) signaling have been implicated in a number of human neurologic and psychiatric disorders. Similarly, defects in DA signaling in the fruit fly, Drosophila melanogaster, have also been associated with several behavioral defects. As most genes involved in DA synthesis, transport, secretion, and signaling are conserved between species, Drosophila is a powerful genetic model organism to study the regulation of DA signaling in vivo. In this review, we will provide an overview of the genes and drugs that regulate DA biology in Drosophila. Furthermore, we will discuss the behavioral paradigms that are regulated by DA signaling in flies. By analyzing the genes and neuronal circuits that govern such behaviors using sophisticated genetic, pharmacologic, electrophysiologic, and imaging approaches in Drosophila, we will likely gain a better understanding about how this neuromodulator regulates motor tasks and cognition in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号