首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.  相似文献   

2.
3.
4.
抗甲霜灵辣椒疫霉菌的环境适合度   总被引:1,自引:0,他引:1  
王光飞  马艳 《微生物学报》2015,55(5):627-634
摘要:【目的】研究抗甲霜灵辣椒疫霉菌的环境适合度,对于评估甲霜灵防治辣椒疫霉的抗药性风险具有重要意义。【方法】以室内药剂驯化的抗甲霜灵辣椒疫霉菌株Pc2-3为研究对象,分析比较其与原始敏感菌株Pc2的主要生物学特性、生长竞争力、致病力及土壤适合度等环境适合度指标。【结果】Pc2-3孢子囊产生量(3 d后)、孢子囊释放率(24 h后)和游动孢子萌发率(8 h后)分别是Pc2的0.44、0.09和0.54倍。Pc2-3可生长温度和pH范围及最适生长温度与Pc2基本一致,但菌丝生长速率低于Pc2。竞争力测定显示,在胡萝卜(CA)平板培养条件下,Pc2-3生长极显著弱于Pc2。盆栽致病试验显示,Pc2-3对辣椒植株的致病率为14.3%,明显低于Pc2(88.6%)。两者等量混合后接种,辣椒植株的发病率为75.7%,接近单独接种Pc2时的发病率,且所有病株分离出的辣椒疫霉菌均为甲霜灵敏感型。分别将Pc2-3和Pc2游动孢子加入自然土壤培养20 d后,实时定量PCR检测显示Pc2-3数量是Pc2的0.28倍,当土壤中含有300 mg/kg干土的甲霜灵,则前者为后者的0.42倍。此外,2个菌株最适存活土壤温度和湿度基本一致,当土壤温度和湿度利于辣椒疫霉存活时,Pc2-3土壤适合度显著低于Pc2,不利于辣椒疫霉存活时,Pc2-3土壤适合度略低于Pc2。【结论】抗甲霜灵菌株Pc2-3环境适合度弱于原始敏感菌株Pc2。  相似文献   

5.
土壤中辣椒疫霉分离方法的研究与量化测定   总被引:1,自引:0,他引:1  
从杭州、西安、广州及武汉等辣椒病田分别采集土样 ,室内晾干研碎后 ,用选择性培养基 ,采用土壤稀释平板法和组织诱饵法分离辣椒疫霉 (PhytophthoracapsiciLeonian) ,并对土壤中辣椒疫霉的密度进行量化处理。结果表明 ,利用选择性燕麦培养基 ,采用土壤稀释平板法可分离获得大量的辣椒疫霉菌株 ,而且辣椒连作田的辣椒疫霉菌密度高于轮作田。组织诱饵法试验结果表明 ,辣椒叶片诱集效果最好 ,其次是辣椒果实。  相似文献   

6.
Phytophthora capsici and P.parasitica were transformed to hygromycin B resistance using plasmids pCM54 and pHL1, which contain the bacterial hygromycin B phosphotransferase gene (hph) fused to promoter elements of the Ustilago maydis heat shock hsp70 gene. Enzymes Driselase and Novozyme 234 were used to generate protoplasts which were then transformed following exposure to plasmid DNA and polyethylene glycol 6000. Transformation frequencies of over 500 transformants per micrograms of DNA per 1 x 10(6) protoplasts were obtained. Plasmid pCM54 appears to be transmitted in Phytophthora spp. as an extra-chromosomal element through replication, as shown by Southern blot hybridization and by the loss of plasmid methylation. In addition, transformed strains retained their capacity of infecting Serrano pepper seedlings and Mc. Intosh apple fruits, the host plants for P.capsici and P.parasitica, respectively.  相似文献   

7.
Truong NV  Liew EC  Burgess LW 《Fungal biology》2010,114(2-3):160-170
Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper (Piper nigrum) throughout Vietnam. To understand the population structure of P. capsici, a large collection of P. capsici isolates from black pepper was studied on the basis of mating type, random amplified microsatellites (RAMS) and repetitive extragenic palindromic (REP) fingerprinting. Two mating types A1 and A2 were detected in four provinces in two climatic regions, with A1:A2 ratios ranging from 1:3 to 1:5. In several instances A1 and A2 mating types were found to co-exist in the same farm or black pepper pole, suggesting the potential for sexual reproduction of P. capsici in the field in Vietnam although its contribution to disease epidemics is uncertain. RAMS and REP DNA fingerprinting analysis of 118 isolates of P. capsici from black pepper showed that the population was genetically more diverse where two mating types were found, although the overall genetic diversity was low with most of the isolates belonging to one clonal group. The implication of these findings is discussed. The low diversity among isolates suggests that the P. capsici population may have originated from a single source. There was no genetic differentiation of isolates from different climatic regions. In addition to the large clonal group, several isolates with unique RAMS/REP phenotypes were also detected. Most of these unique phenotypes belonged to the minority A1 mating type. This may have significant implications for a gradual increase in overall genetic diversity.  相似文献   

8.
Phytophthora capsici is an important oomycete pathogen threatening the vegetable production in China, but very little is known about its population structure. The objective of the present study was to evaluate the genetic diversity of 49 P. capsici isolates obtained from 2007 to 2014 at nine provincial locations in China. Isolates were assessed for mating type, metalaxyl resistance and simple sequence repeat (SSR) genotype. Mating‐type analyses of the isolates showed that both mating types were present in all of the sampled production regions, and the mating‐type frequency in the total Chinese population did not deviate significantly from a 1:1 ratio. Responses of isolates to the fungicide metalaxyl indicated the presence of intermediate resistance to metalaxyl among the field population. A universal fluorescent labelling method was adapted in this study to improve the efficiency of SSR genotyping. Microsatellite genotyping of the isolates using seven SSR markers revealed 44 unique multilocus genotypes. Genetic analyses indicated the existence of two genetic clusters within Chinese P. capsici collection. Clonal reproduction may play a more prominent role in Yunnan Province, but non‐existence of repeated genotypes and existence of both mating types throughout all regions suggest outcrossing and sexual recombination likely play an important role in the overall epidemiology in China. Future studies would include expanded scale sampling at single regions over multiple years to better define the genetic diversity of P. capsici in China.  相似文献   

9.
Eggplant (Solanum melongena L.) is an important solanaceous crop with high phenotypic diversity and moderate genotypic diversity. Ninety-nine genotypes of eggplant germplasm (species (S. melongena, S. incanum, S. linnaeanum and S. gilo), landraces and heirloom cultivars) from 32 countries and five continents were evaluated for genetic diversity, population structure, fruit shape, and disease resistance to Phytophthora fruit rot. Fruits from each line were measured for fruit shape and evaluated for resistance to two Phytophthora capsici isolates seven days post inoculation. Only one accession (PI 413784) was completely resistant to both isolates evaluated. Partial resistance to Phytophthora fruit rot was found in accessions from all four eggplant species evaluated in this study. Genetic diversity and population structure were assessed using 22 polymorphic simple sequence repeats (SSRs). The polymorphism information content (PIC) for the population was moderate (0.49) in the population. Genetic analyses using the program STRUCTURE indicated the existence of four genetic clusters within the eggplant collection. Population structure was detected when eggplant lines were grouped by species, continent of origin, country of origin, fruit shape and disease resistance.  相似文献   

10.
为科学评价中国灌木辣椒种质,选取有代表性的8份辣椒材料,开展了中国灌木辣椒农艺性状鉴定和疫病抗性分析。结果表明:中国灌木辣椒长势强,株高均在1.0 m以上,叶片阔大,花瓣白绿色;果实直立向上,单果质量在0.51~2.04 g之间,平均为1.26 g;果实辣椒素与二氢辣椒素含量之和在565.00~1821.00 mg/kg,平均为1328.33mg/kg,是一年生辣椒B9431的407倍;对疫霉菌抗性水平表现为中抗至高抗,其中,海南野生灌木辣椒H108表现高抗。基于表型数据的主成分分析将中国灌木辣椒与一年生辣椒及美洲灌木辣椒有效区分开来。本研究结果为中国灌木辣椒优异基因的发掘和有效利用提供了理论参考。  相似文献   

11.
Gametangial development and oospore formation were studied, with emphasis on cell wall morphogenesis, on mated cultures (A1xA2) of Phytophthora capsici. In this species, the oogonial and antheridial hyphae interact to produce a typical amphigynous antheridium. The following developmental steps were recognized: 1) contact between oogonial and antheridial initials; 2) penetration of the antheridial initial by the oogonial initial; 3) reemergence of the oogonial initial; 4) oogonial expansion; 5) gametangial delimitation and oogonial wall thickening; 6) penetration of the oogonium by the antheridial fertilization tube; 7) oosphere formation; 8) periplasm degeneration and outer oospore wall formation; and 9) inner oospore wall formation. Electron micrographs were obtained of steps 3–9. Steps 1 and 2 were reconstructed from subsequent events. Steps 3–6 are stages of active wall formation with clear indication of intensive dictyosome activity leading to the formation of numerous wall-destined vesicles of two different sizes and electron densities. No vesicles were seen associated with the development of the inner oospore wall; however, by this stage of development the oosphere cytoplasm exhibited an overall intense electron density that obscured fine detail. Cytoplasmic appearance changed enormously during differentiation, from a developing oogonium rich in mitochondria, ribosomes, rough endoplasmic reticulum, dictyosomes and their vesicles, through an oosphere filled with large finger-print vacuoles and lipid-like bodies, to a mature oospore with a large central vacuole (ooplast) surrounded by a cortex of numerous lipid-like bodies; other organelles are confined to the interstitial space between these storage bodies.  相似文献   

12.
Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.  相似文献   

13.
In the present work 25 strains of Paenibacillus polymyxa isolated from rotted ginseng roots were screened for their antimicrobial activity against Phytophthora capsici in vitro . Based on antimicrobial activity, 15 strains categorized as strongly antimicrobial, among them GBR-462 was found as the most active, and five strains each as weekly antimicrobial and no antimicrobial. Antimicrobial activity was influenced by the initial inoculum density, as strains of P. polymyxa with a strong antimicrobial activity (including P. polymyxa GBR-462) showed the antimicrobial activity against P. capsici and could form biofilm only when they were applied at the higher initial inoculums, 108 cfu/ml. No inhibitory effect was noted on the mycelial growth and zoospore germination of the pathogen when applied at the lower inoculum density of 106 cfu/ml of P. polymyxa GBR-462. However, sporangium formation and zoospore release was significantly inhibited at the lower inoculum density. Also light and electron microscopy revealed the structures of sporangia aberrant with no or few healthy nuclei, indicating sporangium and zoospore formation inhibited at the lower inoculum density. Application of P. polymyxa GBR-462 into potted soil suppressed disease progression as well as disease severity; disease severity was reduced by 30% as compared to untreated pots, suggesting P. polymyxa GBR-462 could be a potential biocontrol agent against Phytopthora capsici .  相似文献   

14.
《菌物学报》2017,(9):1233-1242
辣椒疫霉菌Phytophthora capsici引起的辣椒疫病是世界性蔬菜病害,该病害严重发生常给辣椒生产造成严重损失。植物病原卵菌侵染寄主植物过程中常分泌大量的效应分子来促进自身的侵染与定殖,其中Rx LR效应分子在病原卵菌侵染寄主及与寄主植物互作过程发挥着重要的作用。辣椒疫霉菌是一种重要的植物病原卵菌,本研究以辣椒疫霉菌标准菌株LT1534为材料,克隆鉴定了辣椒疫霉的一个效应分子,编号为Rx LR121504,然后将其构建至PBIN‐GFP2植物表达载体,利用农杆菌介导的瞬时表达技术、Western blot和亚细胞定位观察技术,较深入地开展了Rx LR121504功能特性的研究。结果表明,Rx LR121504能有效引起本氏烟寄主的过敏性坏死反应(HR),并对激发子INF1诱导的细胞坏死反应具明显的抑制效果,因此Rx LR121504可能参与了辣椒疫霉菌抑制寄主的免疫抗菌过程。但Rx LR121504对寄主植物的分子靶标尚未鉴定明确,该效应分子对寄主植物的分子机制有待进一步深入的研究。  相似文献   

15.
Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P. capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays, we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins.  相似文献   

16.
Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.  相似文献   

17.
Some macadamia trees in commercial orchards in Hawaii showing quick decline syndrome had bleeding from the trunk. Phytophthora capsici was isolated from c. 67% of such sites, and was shown to kill branches of artificially-inoculated healthy macadamia trees. The pathogen was detected in both diseased and apparently healthy bark and isolated from wood 80 mm away from the bark. Results suggest that trunk infection by P. capsici may lead to girdling and rapid decline, and attract insects which then cause some bleeding by making wounds at the sites of recent infection.  相似文献   

18.
CRN(crinkling and necrosis-inducing protein)为疫霉菌在与寄主互作过程中分泌的一类特有胞质效应因子,干扰寄主细胞正常的生理代谢和功能。采用PCR法从辣椒疫霉LT1534菌株c DNA中克隆PcCRN20-C基因。该基因序列长783bp,编码261个氨基酸。构建重组表达载体,并转化大肠杆菌BL21(DE3)。在优化条件下诱导表达重组蛋白,利用Ni-NTA金属螯合层析、离子交换层析、分子筛层析和胰蛋白酶酶解技术获得高纯目的蛋白,SDS-PAGE分析表明,蛋白质分子量约为25kDa。采用座滴气相扩散法进行晶体制备和筛选,成功获得了蛋白质晶体,并通过X-射线衍射仪收集了晶体衍射花样。结合蛋白质晶体学方法,获得了有衍射的辣椒疫霉PcCRN20-C蛋白晶体,为进一步研究CRN蛋白的结构与病原菌致病机制提供参考资料。  相似文献   

19.
贵州地区木霉菌分离鉴定及对辣椒疫霉的拮抗作用   总被引:3,自引:0,他引:3  
【背景】辣椒疫霉是一种毁灭性的土传病害,当前主要使用化学合成杀菌剂防治,但容易导致环境污染和食品安全等问题。【目的】筛选可拮抗辣椒疫霉的候选菌株,探究分离菌株拮抗辣椒疫霉的生理生化作用机制。【方法】综合应用形态学、核糖体RNA (rRNA)基因非转录区ITS序列相似性方法鉴定分离菌株,通过对峙实验筛选抑菌效果较高的拮抗菌株,基于比色法测定分离菌株发酵液粗提物对辣椒疫霉菌丝脂质过氧化、纤维素酶、β-葡萄糖苷酶(β-GC)和多聚半乳糖醛酸酶(PG)活性的影响。【结果】从腐木和土壤样品中分离得到11株木霉,分属于绿色木霉(Trichodermavirens)、哈茨木霉(Trichoderma harzianum)、钩状木霉(Trichoderma hamatum)和棘孢木霉(Trichoderma asperellum) 4个种。11株木霉对辣椒疫霉均有一定的抑制作用,抑制率达到90%以上的菌株包括:绿色木霉Tv-1(92.68%)、Tv-2 (95.12%),哈茨木霉Thz-2 (92.68%),钩状木霉Tha-1 (90.24%)。以4株高效木霉的发酵液粗提物处理辣椒疫霉菌丝5 d后,因脂质过氧化产生的丙二醛含量显著增加,分别达到1.20、1.48、2.69和3.16 nmol/g,显著高于对照处理的0.77 nmol/g;与对照组相比,β-GC、PG酶活性显著下降,分别降低了12.28%-64.91%、7.2%-15.5%;同时纤维素酶活性呈上升趋势,最显著组为2.647 U/mL,相对于对照组增加了0.831U/mL。【结论】分离得到4株明显抑制辣椒疫霉菌生长的高效木霉菌,主要通过破坏细胞壁结构、降低致病因子酶活力和增强脂质过氧化等方式起拮抗作用,可为辣椒疫病的生物防治提供理论依据和技术支持。  相似文献   

20.
Quantitative and qualitative changes in isoperoxidase patterns from stems of three cultivars of pepper ( Capsicum annuum L.). one susceptible, one intermediate and one resistant, were found upon inoculation with Phytophthora capsici using a decapitation method. The peroxidase activity was determined in the intercellular fluid as well as in the cytosolic fraction of the necrotic, healthy and intermediate zones of stems of the three cultivars, 6 days after inoculation. In the intercellular fluid, peroxidase activity of the susceptible cv. Yolo Wonder increased somewhat from 4.7 (healthy zone) to 12.9 (intermediate zone) μmol mg−1 protein min−1, whereas in the intermediate cv. Americano, the peroxidase activity decreased from 123 (healthy zone) to 78 (intermediate zone) μmol mg−1 protein min−1. The most dramatic increase (5.7 to 662 μmol mg−1 protein min−1) in intercellular peroxidase activity was found in the resistant cv. Smith-5. This, in conjunction with the appearance of an additional acidic isoperoxidase (pI 4.4) specific for the cv. Smith-5, could be the reason for the resistance of this cultivar against the fungus attack. The release of peroxidase into the intercellular space as a defense reaction was confirmed by histochemical analysis, showing that peroxidase activity occurred in the intercellular spaces of those stems of the resistant cultivar that had not yet been invaded by the fungus, but was detected neither in the other cultivars nor in the intercellular spaces of such stems of the intermediate and susceptible cultivars that contained growing mycelium of P. capsici. The lack of staining in the intercellular spaces of the susceptible cultivars could be attributed to their low content in peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号