首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organization. DNA constructs expressing the Hsp90α1 mutants with altered putative ATP binding, phosphorylation, acetylation or methylation sites were co-injected with Hsp90α1 specific morpholino into zebrafish embryos. Myosin thick filament organization was analyzed in skeletal muscles of the injected embryos by immunostaining. The results showed that mutating the conserved D90 residue in the Hsp90α1 ATP binding domain abolished its function in thick filament organization. In addition, phosphorylation mimicking mutations of T33D, T33E and T87E compromised Hsp90α1 function in myosin thick filament organization. Similarly, K287Q acetylation mimicking mutation repressed Hsp90α1 function in myosin thick filament organization. In contrast, K206R and K608R hypomethylation mimicking mutations had not effect on Hsp90α1 function in thick filament organization. Given that T33 and T87 are highly conserved residues involved post-translational modification (PTM) in yeast, mouse and human Hsp90 proteins, data from this study could indicate that Hsp90α1 function in myosin thick filament organization is potentially regulated by PTMs involving phosphorylation and acetylation.  相似文献   

2.
It is unclear why mutations in the filament-forming tail of myosin heavy chain (MHC) cause hypertrophic or dilated cardiomyopathy as these mutations should not directly affect contraction. To investigate this, we first investigated the impact of five hypertrophic cardiomyopathy-causing (N1327K, E1356K, R1382W, E1555K, and R1768K) and one dilated cardiomyopathy-causing (R1500W) tail mutations on their ability to incorporate into muscle sarcomeres in vivo. We used adenoviral delivery to express full-length wild type or mutant enhanced GFP-MHC in isolated adult cardiomyocytes. Three mutations (N1327K, E1356K, and E1555K) reduced enhanced GFP-MHC incorporation into muscle sarcomeres, whereas the remainder had no effect. No mutations significantly affected contraction. Fluorescence recovery after photobleaching showed that fluorescence recovery for the mutation that incorporated least well (N1327K) was significantly faster than that of WT with half-times of 25.1 ± 1.8 and 32.2 ± 2.5 min (mean ± S.E.), respectively. Next, we determined the effects of each mutation on the helical properties of wild type and seven mutant peptides (7, 11, or 15 heptads long) from the myosin tail by circular dichroism. R1382W and E1768K slightly increased the α-helical nature of peptides. The remaining mutations reduced α-helical content, with N1327K showing the greatest reduction. Only peptides containing residues 1301–1329 were highly α-helical suggesting that this region helps in initiation of coiled coil. These results suggest that small effects of mutations on helicity translate into a reduced ability to incorporate into sarcomeres, which may elicit compensatory hypertrophy.  相似文献   

3.
In addition to a conventional relaxed state, a fraction of myosins in the cardiac muscle exists in a low-energy consuming super-relaxed (SRX) state, which is kept as a reserve pool that may be engaged under sustained increased cardiac demand. The conventional relaxed and the super-relaxed states are widely assumed to correspond to a structure where myosin heads are in an open configuration, free to interact with actin, and a closed configuration, inhibiting binding to actin, respectively. Disruption of the myosin SRX population is an emerging model in different heart diseases, such as hypertrophic cardiomyopathy, which results in excessive muscle contraction, and stabilizing them using myosin inhibitors is budding as an attractive therapeutic strategy. Here we examined the structure–function relationships of two myosin ATPase inhibitors, mavacamten and para-nitroblebbistatin, and found that binding of mavacamten at a site different than para-nitroblebbistatin populates myosin into the SRX state. Para-nitroblebbistatin, binding to a distal pocket to the myosin lever arm near the nucleotide-binding site, does not affect the usual myosin SRX state but instead appears to render myosin into a new, perhaps much more inhibited, ‘ultra-relaxed’ state. X-ray scattering-based rigid body modeling shows that both mavacamten and para-nitroblebbistatin induce novel conformations in human β-cardiac heavy meromyosin that diverge significantly from the hypothetical open and closed states, and furthermore, mavacamten treatment causes greater compaction than para-nitroblebbistatin. Taken together, we conclude that mavacamten and para-nitroblebbistatin stabilize myosin in different structural states, and such states may give rise to different functional energy-sparing states.  相似文献   

4.
The human hypertrophic cardiomyopathy mutation R453C results in one of the more severe forms of the myopathy. Arg-453 is found in a conserved surface loop of the upper 50-kDa domain of the myosin motor domain and lies between the nucleotide binding pocket and the actin binding site. It connects to the cardiomyopathy loop via a long α-helix, helix O, and to Switch-2 via the fifth strand of the central β-sheet. The mutation is, therefore, in a position to perturb a wide range of myosin molecular activities. We report here the first detailed biochemical kinetic analysis of the motor domain of the human β-cardiac myosin carrying the R453C mutation. A recent report of the same mutation (Sommese, R. F., Sung, J., Nag, S., Sutton, S., Deacon, J. C., Choe, E., Leinwand, L. A., Ruppel, K., and Spudich, J. A. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, 12607–12612) found reduced ATPase and in vitro motility but increased force production using an optical trap. Surprisingly, our results show that the mutation alters few biochemical kinetic parameters significantly. The exceptions are the rate constants for ATP binding to the motor domain (reduced by 35%) and the ATP hydrolysis step/recovery stroke (slowed 3-fold), which could be the rate-limiting step for the ATPase cycle. Effects of the mutation on the recovery stroke are consistent with a perturbation of Switch-2 closure, which is required for the recovery stroke and the subsequent ATP hydrolysis.  相似文献   

5.
Previously, we have found that activation of deoxycytidine kinase elicited by various DNA-damaging chemical agents could be prevented by BAPTA-AM, a cell-permeable calcium chelator or by pifithrin-α, a pharmacological inhibitor of p53. Here, we show that stimulation of deoxycytidine kinase by UV-light also is calcium-dependent and pifithrin-α-sensitive in tonsillar lymphocytes, while thymidine kinase 1 activity is stabilised in the presence of BAPTA-AM. Importantly, both UV-irradiation and calcium chelation decreased the incorporation of labelled deoxycytidine and thymidine into DNA. Pifithrin-alpha dramatically reduced the labelling of both the nucleotide and DNA fractions, possibly due to inhibition of transmembrane nucleoside transport.  相似文献   

6.
Radko  S. P.  Khmeleva  S. A.  Kiseleva  Y. Y.  Kozin  S. A.  Mitkevich  V. A.  Makarov  A. A. 《Molecular Biology》2019,53(6):922-928
Molecular Biology - Zinc ions and glycosaminoglycans (GAGs) are found in amyloid deposits and are known to modulate the β-amyloid peptide (Аβ) aggregation, which is thought to be a...  相似文献   

7.
Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions.  相似文献   

8.
Nabiev  S. R.  Kopylova  G. V.  Shchepkin  D. V. 《Biophysics》2019,64(5):690-693
Biophysics - Abstract—In addition to troponin and tropomyosin, cardiac myosin-binding protein C (cMyBP-C), which has an effect on the function of myosin and thin filament activation, is...  相似文献   

9.
Amyloid beta (Aβ) peptide plays an important role in Alzheimer’s disease. A number of mutations in the Aβ sequence lead to familial Alzheimer’s disease, congophilic amyloid angiopathy, or hereditary cerebral hemorrhage with amyloid. Using molecular dynamics simulations of ∼200 μs for each system, we characterize and contrast the consequences of four pathogenic mutations (Italian, Dutch, Arctic, and Iowa) for the structural ensemble of the Aβ monomer. The four familial mutations are found to have distinct consequences for the monomer structure.Amyloid beta (Aβ) peptides have long been thought to play a central role in Alzheimer’s disease (AD). Usually 40 or 42 residues in length, Aβ peptides are proteolytic products of the Aβ precursor protein and they aggregate to form the fibrillar plaques in AD patients’ brains. Besides fibrillar plaques, Aβ oligomers are also neurotoxic. The significance and nature of Aβ oligomerization has recently become a focus of intensive research studies and debates (1,2). Notably, numerous pathogenic mutations have been identified in the Aβ precursor protein sequence and in the enzymes involved in Aβ processing (3). These mutations generally lead to early onset of AD or cerebral amyloid angiopathy. Understanding how the pathogenic mutations alter Aβ oligomerization/aggregation is essential to our understanding of the disease mechanism.Four of these pathogenic mutations (Italian E22K, Dutch E22Q, Arctic E22G, and Iowa D23N) cluster in the region of E22 and D23 in the Aβ sequence (distal from proteolytic cleavage sites) and they have higher neurotoxicity compared to wild-type (WT) Aβ (4). These mutations are thought to modify the physicochemistry of the peptide. For example, kinetic studies (4) show that the E22K and E22Q mutations lead to faster peptide aggregation, whereas the E22G and D23N mutations result in slightly slower aggregation than WT Aβ42 (although the E22G mutation shows increased protofibril formation (5)). Recent solid-state NMR studies also suggest that rather than the in-register β-sheet conformation adopted by WT Aβ, the Iowa D23N mutant forms amyloid fibrils with antiparallel β-sheet structure (6).To understand how the mutations modify the peptide oligomerization/aggregation it is critical to characterize the starting point of the process, the monomers. Unfortunately, investigating the early phase of the oligomerization process experimentally is a challenging task due to the high aggregation propensity of Aβ and its intrinsic disorder. Therefore, a number of computational approaches have been adopted to investigate the consequences of mutations for the monomer structure (7–16). However, due to the high computational demands of explicit-solvent molecular dynamics (MD) simulations to simulate full-length Aβ peptides, most of these computational studies are either on Aβ fragments (to decrease the system size) using explicit-solvent simulations (8–12) or on full-length Aβ using implicit-solvent simulations (which are less computationally demanding and enable longer simulation times, but lack explicit water molecules in the simulations to fully describe water-peptide interactions) (13–15). In a very recent report, explicit-solvent simulations were used to study the effects of the E22Q mutation on full-length Aβ; however, rather limited data (<10 μs) were collected (16). Thus, characterizing full-length Aβ monomers remains quite a daunting task even with simulations.To characterize the effects of mutations on full-length Aβ monomer using explicit-solvent MD simulations, we employed distributed computing (17) to simulate the WT Aβ42, Aβ42-E22K, Aβ42-E22Q, Aβ42-E22G, and Aβ42-D23N monomers. MD simulations of >200 μs were performed for each system and AMBER ff99sb (18) and the tip3p water model (19) were used for force field parameters. Peptide configurations in the MD trajectories were clustered with the root mean-square deviation metric to identify representative conformations (i.e., states) and transitions between these states were counted. Markov state model analysis was then performed where the master equations were solved and the equilibrium population of each state deduced (20). Details of the MD simulation procedures and Markov state model analysis can be found in the Supporting Material.Each of the five Aβ monomer systems exhibits great structural diversity and can only be characterized in an ensemble fashion (rather than described by a handful of representative configurations). This is in accord with the notion that full-length Aβ peptides are intrinsically disordered (21,22). Using the Dictionary of Secondary Structure of Proteins program (23) to assign secondary structure, it is clear that the five Aβ monomer systems are found overall not well structured, although small β-hairpins and α-helices are observed. In Fig. 1 we plot the residue-dependent extended β propensity and α-helix propensity, in the top and bottom panels, respectively, for each Aβ monomer system. Although we are reasonably confident of the convergence behavior of the α-helix propensity, we note that the convergence of the extended β-propensity might be more challenging and demand a much longer sampling time than the current aggregate simulation time of ∼200 μs (24).Open in a separate windowFigure 1Ensemble-averaged %population of β-strand (top) and α-helix (bottom) propensity for all five monomer systems. The sequence of the WT Aβ42 is given on the x axis.We observe in Fig. 1 that all five Aβ monomer systems share a rather similar residue-dependent tendency to form an extended β-structure, although minor differences are present. On the other hand, these pathogenic mutations alter the α-helix propensity quite significantly. The E22K and E22Q mutations increase the α-helix propensity in the region of residues 20–23. All four mutations (E22K, E22Q, E22G, and D23N) decrease the α-helix propensity in the region of residues 33–36.Notably, we find that in all five systems only short stretches of α-helices are formed. That is, when a residue is involved in α-helix formation, it participates in forming mostly short helical segments (consisting of only four helical residues). To provide more insight into the changes of α-helix propensity due to the mutations, in Fig. S1 we plot the tendency of forming short α-helices along the sequence for all five systems. Each data point in Fig. S1 represents the propensity to form an α-helix of four residues in length, ending at the specific residue. For example, in the structural ensemble adopted by the WT peptide, ∼5.5% of the conformations have a short α-helix of size four, involving residues 15–18. We see from Fig. S1 that the E22K and E22Q mutations induce the formation of two short helices in residues 19–22 and 20–23. The higher α-helix propensity in this region for the E22K mutant compared to the WT was previously attributed to the elimination of the electrostatic repulsion between E22 and D23 in the WT by the mutation and the longer aliphatic chain of K22 in the mutant compared to E22 in the WT (9,22). This is consistent with the observation that the E22Q mutation also induces helix formation in this region (by eliminating the electrostatic repulsion between E22 and D23 in the WT) but to a lesser extent, possibly due to the shorter aliphatic chain of Q22 compared to K22.In the E22G mutant, although the mutation eliminates the electrostatic repulsion between E22 and D23 in the WT peptide, glycine is known to be a helix breaker (25), leading to diminished α-helix propensity in the region around residue G22 seen in Fig. S1.In the D23N mutant, although the mutation eliminates the electrostatic repulsion between E22 and D23 in the WT peptide, it does not induce (or rather even slightly decreases) helix formation around residue 23. This may be due to the short aliphatic chain of N23 but it is possible that the mutation induces some nonlocal effects on the peptide structure, disfavoring helix formation in this region.It is worth noting that all four mutations (E22K, E22Q, E22G, and D23N) virtually eliminate the α-helix propensity in the region of residues 33–36. This region is rather far away from the mutation sites in sequence but its α-helix propensity is nonetheless affected. The origin of such a nonlocal effect is less straightforward to explain and further analysis will aid untangling this behavior. Nonetheless, the diminished α-helix propensity in the region of residues 33–36 appears to be a consistent feature across all four mutants.The four mutations studied here (E22K, E22Q, E22G, and D23N) have been thought to modify the physicochemistry of the peptide and alter the oligomerization/aggregation process, leading to higher neurotoxicity. In predicting intrinsic aggregation propensities using peptide sequences, all four mutants are suggested to be more aggregation prone (26). On the other hand, kinetic studies show that only the E22K and E22Q mutants aggregate more quickly, whereas the E22G and D23N mutations result in slightly slower aggregation than WT Aβ42 (4). Our simulation results suggest these pathogenic mutations have complicated effects on the monomer structure—all four mutations decrease helix propensity in residues 33–36, whereas only the E22K and E22Q mutations increase helix propensity in residues 20–23. It is interesting to note that α-helix propensity is generally thought to anticorrelate with aggregation propensity; however, recent studies have suggested an important role of α-helical intermediates in amyloid oligomerization (27–29). Our studies suggest that it would be of great value to investigate how the distinct patterns of α-helix propensity in these five systems may propagate to give rise to different oligomerization kinetics or even mechanisms. The pathogenic mutations studied here have complex effects on the oligomerization of the peptide. The characterization of the monomer structural ensembles reported here should aid understanding of such an important and complicated process.  相似文献   

10.
We have determined the secondary structure of 1–40 β-amyloid peptides by Fourier-transform infrared spectroscopy (FTIR) and characterized the peptide photophysical properties before and after self-assembly by using intrinsic tyrosine steady-state and time-resolved fluorescence. All measurements were performed in the presence and absence of hypericin (Hyp), an exogenous natural polycyclic pigment that has been shown to inhibit fibril formation and has also been used as a fluorescent probe. We monitored the time course of the aggregation process measuring 405 nm light diffusion at 90° and used thioflavin T to reveal the presence of fibrils. FTIR quantitative analysis evidenced a prevalent random conformation at t = 0 with and without Hyp. Fibrils showed a predominant parallel β-sheet structure and a small percentage of α-helix. The results of fluorescence measurements showed that Hyp does significantly interact with peptides in β-sheet conformation. In conclusion, hypericin does hinder the formation of fibrils, but the percentages of parallel β-sheets were not significantly different from those found in samples not treated with Hyp.  相似文献   

11.
Key elements of β-structure folding include hydrophobic core collapse, turn formation, and assembly of backbone hydrogen bonds. In the present folding simulations of several β-hairpins and β-sheets (peptide 1, protein G B1 domain peptide, TRPZIP2, TRPZIP4, 20mer, and 20merDP6D), the folding free-energy landscape as a function of several reaction coordinates corresponding to the three key elements indicates apparent dependence on turn stability and side-chain hydrophobicity, which demonstrates different folding mechanisms of similar β-structures of varied sequences. Turn stability is found to be the key factor in determining the formation order of the three structural elements in the folding of β-structures. Moreover, turn stability and side-chain hydrophobicity both affect the stability of backbone hydrogen bonds. The three-stranded β-sheets fold through a three-state transition in which the formation of one hairpin always takes precedence over the other. The different stabilities of two anti-parallel hairpins in each three-stranded β-sheet are shown to correlate well with the different levels of their hydrophobic interactions.  相似文献   

12.
Over 20 mutations in β-cardiac myosin heavy chain (β-MHC), expressed in cardiac and slow muscle fibers, cause Laing early-onset distal myopathy (MPD-1), a skeletal muscle myopathy. Most of these mutations are in the coiled-coil tail and commonly involve a mutation to a proline or a single-residue deletion, both of which are predicted to strongly affect the secondary structure of the coiled coil. To test this, we characterized the effects of two MPD-1 causing mutations: A1603P and K1617del in vitro and in cells. Both mutations affected secondary structure, decreasing the helical content of 15 heptad and light meromyosin constructs. Both mutations also severely disrupted the ability of glutathione S-transferase–light meromyosin fusion proteins to form minifilaments in vitro, as demonstrated by negative stain electron microscopy. Mutant eGFP-tagged β-MHC accumulated abnormally into the M-line of sarcomeres in cultured skeletal muscle myotubes. Incorporation of eGFP-tagged β-MHC into sarcomeres in adult rat cardiomyocytes was reduced. Molecular dynamics simulations using a composite structure of part of the coiled coil demonstrated that both mutations affected the structure, with the mutation to proline (A1603P) having a smaller effect compared to K1617del. Taken together, it seems likely that the MPD-1 mutations destabilize the coiled coil, resulting in aberrant myosin packing in thick filaments in muscle sarcomeres, providing a potential mechanism for the disease.  相似文献   

13.
Experimental evidence has suggested that the high endogenous levels of taurine found in the rat heart and retina are maintained to a large extent by transport processes out of the blood, rather than by endogenous biosynthesis. When these high levels are depleted, dysfunction ensues. In vitro studies have shown that -alanine is a good antagonist of these transport processes. The current studies were done to evaluate the feasibility of depleting heart and retinal taurine levels in vivo through treatment of adult rats either orally or with injections of -alanine. None of the treatments had significant effects on retinal taurine content; ventricular taurine was reduced in some situations, but the effects were not maintained, nor as large as with another transport antagonist. No functional changes were observed. Oral treatment with -alanine had fewer obvious side effects than injections, but all treated rats had body weights less than age-matched controls.  相似文献   

14.
G protein-coupled receptors represent the largest class of drug targets, but genetic variation within G protein-coupled receptors leads to variable drug responses and, thereby, compromises their therapeutic application. One of the most intensely studied examples is a hyperfunctional variant of the human β1-adrenoceptor that carries an arginine at position 389 in helix 8 (Arg-389-ADRB1). However, the mechanism underlying the higher efficacy of the Arg-389 variant remained unclear to date. Despite its hyperfunctionality, we found the Arg-389 variant of ADRB1 to be hyperphosphorylated upon continuous stimulation with norepinephrine compared with the Gly-389 variant. Using ADRB1 sensors to monitor activation kinetics by fluorescence resonance energy transfer, Arg-389-ADRB1 exerted faster activation speed and arrestin recruitment than the Gly-389 variant. Both activation speed and arrestin recruitment depended on phosphorylation of the receptor, as shown by knockdown of G protein-coupled receptor kinases and phosphorylation-deficient ADRB1 mutants. Structural modeling of the human β1-adrenoceptor suggested interaction of the side chain of Arg-389 with opposing amino acid residues in helix 1. Site-directed mutagenesis of Lys-85 and Thr-86 in helix 1 revealed that this interaction indeed determined ADRB1 activation kinetics. Taken together, these findings indicate that differences in interhelical interaction regulate the different activation speed and efficacy of ADRB1 variants.  相似文献   

15.
The Bgs locus determines tissue levels of β-galactosidase in the mouse, so that enzyme levels are twice as high in mice carrying the Bgs hallele as in mice carrying the Bgs dallele (Felton et al., 1974). By immunotitration with antiserum to purified β-galactosidase, we have found that the Bgs locus influences the amount of enzyme protein present in the tissues. We have utilized recombinant inbred lines derived from a cross between C57BL/6J and DBA/2J mice to confirm the location of the Bgs locus on chromosome 9. The inhibition of mouse β-galactosidase by the active-site-directed reagent N-bromoacetyl-β-d-galactosylamine has been investigated. β-Galactosidase from the high and low Bgs strains has identical affinity for this inhibitor.  相似文献   

16.
Magnesium deficiency was induced in male Wistar rats by adding an excess of phosphorus and calcium to the diet (1.195 g of phosphorus and 1.04g of calcium/100g of diet). Feeding of these animals with a diet containing β1→4 linked galactooligosaccharides (4′-GOS) (5g of 4′-GOS/100g of diet) increased the apparent magnesium absorption ratios and the concentrations of magnesium in the serum and femur, and reduced accumulation of calcium in the kidney and heart. We speculate that the use of magnesium increased by feeding 4′-GOS to a limited extent prevented the lower magnesium status and the severity of calcification of the kidney and heart caused by excess dietary phosphorus and calcium.  相似文献   

17.
The kinetics of renaturation of the β2-subunit of Escherichia coli tryptophan-synthetase (l-serine hydrolyase (adding indole) E.C. 4.2.1.20) and those of its two proteolytic fragments F1 and F2 are studied and compared. Steps corresponding to the refolding of F1, to the association of the folded F1 and F2 fragments, and to an isomerization of the associated protein are identified. These steps are ordered on the pathway of renaturation and some of their kinetic parameters are determined. This leads to a tentative kinetic model for the renaturation of nicked-β2 starting from the denatured F1 and F2 fragments.The step corresponding to the refolding of the F1 domain, as well as that corresponding to the last rate-limiting isomerization leading to the native protein, is shown to be the same in the refolding of the entire, uncleaved β2-protein. It is concluded that the refolded F1 fragment corresponds to a folding intermediate on the pathway of renaturation of the β2-subunit.  相似文献   

18.
The incidence rates of long QT syndrome (LQTS) and drug-induced torsades de pointes (TDP) are higher in women than men. Although gonadal steroids are assumed to play an important role in the gender-based differences in cardiac electrophysiological properties, the underlying mechanisms of the gender-based differences are not fully understood. In particular I Kr, which comprises the repolarization phase of the action potential, has not been well understood in its modulation by sex hormones. To assess this, we examined the effects of the female sex hormone β-estradiol on the human ether-a-go-go-related gene (hERG)-encoded potassium current stably expressed in human embryonic kidney-293 (HEK) cells. We demonstrated that hERG currents were inhibited by β-estradiol maximally to 62% of control with an IC50 of 1.3 μM and a Hill coefficient of 0.87, which might account for the sex-related differences in LQTS. We also examined whether estrogen modulated drug-induced blocking effects on hERG currents or not. With simultaneous application of 10 μM erythromycin, which is known to block hERG currents but not in low doses, the blocking effects of β-estradiol on hERG currents were enhanced. Namely, hERG currents were inhibited maximally to 45.8% of control with an IC50 of 59 nM (P < 0.02) by β-estradiol with 10 μM erythromycin. We conclude here that a significant block of hERG currents by β-estradiol may account for the sex-related differences in LQTS and the synergic effects of β-estradiol and erythromycin indicate a higher risk of drug-induced TDP in women than men.  相似文献   

19.
This study investigated the effects of cold stress on morphometrical and hematological biomarkers, energy metabolism, and oxidative stress in different tissues of P. mesopotamicus, and the protective role of β-carotene. Fish were fed with a control diet (CD) and the same diet supplemented with 105 mg/kg β-carotene (BD) for 60 days. After the feeding trial, fish fed CD or BD diets were exposed to control (24 °C) and low temperature (14 °C) for 24 h. Fish (CD and BD) exposed to thermal stress showed lower hepatosomatic index. The hemoglobin increased only in CD-fed fish exposed to 14 °C. Increased glycemia, plasmatic protein depletion, and decreased hepatic glycogen were observed in fish fed the CD, while only the lipid levels in liver were augmented in BD-fed fish exposed at 14 °C. Regarding the oxidative stress, increased antioxidant enzymes activity and lipid peroxidation were observed in CD-fed fish exposed to cold. The two-way ANOVA showed an interaction between dietary treatment and temperature for glucose and oxidative stress biomarkers, with the highest values recorded in 14 °C-exposed fish fed with the CD. Our study demonstrated that cold stress had the greatest impact on fish oxidative status, and β-carotene reduces harmful effects induced by cold in P. mesopotamicus.  相似文献   

20.
This study was designed to evaluate the effect barley-based diets vs. oats based diets on levels of Lactobacillus, Bifidobacterium and Enterobacterium in the porcine gastrointestinal tract (GIT). In addition the effect of enzyme supplementation in both diets was explored. Twenty-eight boars were used in a 2 × 2 factorial arrangement and were assigned to 1 of 4 dietary treatments: barley-based (B) diet; barley-based diet plus an enzyme supplement (B + ES); oat-based (O) diet or oat-based diet plus an enzyme supplement (O + ES). The enzyme supplement contained endo-1,3-β-glucanase and endo-1,4-β-xylanase. Faecal samples were collected from the pigs prior to initiations of the experiment and at slaughter. At slaughter digesta samples were collected from the stomach, ileum, caecum, proximal and distal colon. Alterations in Lactobacillus species composition in the gastrointestinal tract (GIT) were analysed by genus-specific PCR – denaturing gradient gel electrophoresis (DGGE). DGGE profiles indicated that cereal source provoked shifts in Lactobacillus population. The most diverse populations of lactobacilli emerged after feeding the O diets. Enzymes inclusion altered the composition of Lactobacillus species prevalent throughout the GIT in animals fed the B diet, causing a shift in the dominant lactobacilli present in the caecum and proximal colon. No such effect was evident in animals fed the enzyme supplemented O + ES diet. Microbial plate counts revealed that the O diets gave rise to higher counts of Lactobacillus in the caecum and colon and Bifidobacterium counts in the ileum, caecum and colon than the B diets. The O diet caused a 2 log increase in Enterobacterium counts in the proximal colon, no such effects were observed in animals fed the B, the B + ES or the O + ES diets. Overall both O diets had a more positive influence on the counts of the beneficial microorganisms and richness of the Lactobacillus population in the porcine GIT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号