首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental studies have demonstrated that oxidative stress and apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The purpose of this study was to determine whether the quercetin dihydrate (Q) protects against cerebral ischemia neuronal damage. Male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2?h and reperfused for 72?h. Quercetin (30?mg/kg, i.p) was administrated 30?min before the onset of ischemia and after the ischemia at interval of 0, 24, 48, and 72?h. The administration of Q showed marked reduction in infarct size, reduced the neurological deficits in terms of behaviors, suppressed neuronal loss and diminished the p53 expression in MCAO rats. Q was found to be successful in upregulating the antioxidant status and lowering the TBARS level. Conversely, the elevated activity of poly (ADP-ribose) polymerase (PARP), and activity of caspase-3 in MCAO group was attenuated significantly in Q treated group when compared with MCAO group. Our study reveals that Q, as a powerful antioxidant, could prevent free radicals associated oxidative damage and morphological changes in the MCAO rats. Thus, it may have a therapeutic value for the treatment of stroke.  相似文献   

2.
Zhu  Jiangtao  Wu  Di  Zhao  Chenyu  Luo  Man  Hamdy  Ronald C.  Chua  Balvin H. L.  Xu  Xingshun  Miao  Zhigang 《Neurochemical research》2017,42(10):2949-2957
Neurochemical Research - Previous studies have demonstrated that plasma resistin levels were increased in patients with acute ischemic stroke. However, the role of resistin after ischemic brain...  相似文献   

3.
This investigation was performed to determine the neuroprotective effect of baicalin on permanent cerebral ischemia injury in rats and the potential mechanisms in this process. Adult male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (pMCAO). The rats were then received intraperitoneal injection with baicalin (10, 30 and 100 mg/kg) or vehicle. Morphological characteristic, neurological deficit scores, cerebral infarct volume and the enzymatic activity of myeloperoxidase (MPO) were measured 24 h after pMCAO. The mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were determined by RT-PCR. Neuronal apoptosis was determined by TUNEL staining and Western blot. Baicalin (30 and 100 mg/kg) reduced neurological deficit scores and cerebral infarct volume 24 h after pMCAO. Baicalin significantly decreased the enzymatic activity of MPO and the expression of iNOS mRNA and COX-2 mRNA in rat brain, it also significantly inhibited neuronal apoptosis and the expression of cleaved caspase-3 protein after pMCAO. Our results suggested that baicalin possesses potent anti-inflammatory and anti-apoptotic properties and attenuates cerebral ischemia injury. This protection might be associated with the downregulated expression of iNOS mRNA, COX-2 mRNA, and cleaved caspase-3 protein.  相似文献   

4.
5.
Repetitive transcranial magnetic stimulation (rTMS) has increasingly been studied over the past decade to determine whether it has a therapeutic benefit on focal cerebral ischemia. However, the underlying mechanism of rTMS in this process remains unclear. In the current study, we investigated the effects of rTMS on the proliferation of adult neural stem cells (NSCs) and explored microRNAs (miRNAs) that were affected by rTMS. Our data showed that 10 Hz rTMS significantly increased the proliferation of adult NSCs after focal cerebral ischemia in the subventricular zone (SVZ), and the expression of miR-25 was obviously up-regulated in the ischemic cortex after rTMS. p57, an identified miR-25 target gene that regulates factors linked to NSC proliferation, was also evaluated, and it exhibited down-regulation. To further verify the role of miR-25, rats were injected with a single dose of antagomir-25 and were subjected to focal cerebral ischemia followed by rTMS treatment. The results confirmed that miR-25 could be repressed specifically and could drive the up-regulation of its target gene (p57), which resulted in the inhibition of adult NSC proliferation in the SVZ after rTMS. Thus, our studies strongly indicated that 10 Hz rTMS can promote the proliferation of adult NSCs in the SVZ after focal cerebral ischemia by regulating the miR-25/p57 pathway.  相似文献   

6.
7.
Calpains, cathepsins and caspases play crucial role in mediating cell death. In the present study we observed a cascade of events involving the three proteases during middle cerebral artery occlusion (MCAo) in Wistar rats. The rats were MCA occluded and reperfused at various time points. We observed a maximal increase in the levels of calpains during 1h and 12 h after reperfusion than permanently occluded rats. Further, these levels were reduced by 1st and 3rd day of reperfusion. Similarly the cathepsin-b levels were significantly increased during 1h and 12 h, of reperfusion, followed by activation of caspase-3 which reached maximal levels by 1st and 3rd day of reperfusion. The sequential activation of calpains, cathepsin-b and cleaved caspase-3 is evident by the Western blot analysis which was further confirmed by the cleavage of substrates like PSD-95 and spectrin. The differences in the regional distribution and elevation of these proteases at different reperfusion time periods indicates that differential mode of cell death occur in the brain during cerebral ischemia in rat model.  相似文献   

8.
Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27) is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a “physiological” HSP27 (hHSP27) from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27), which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.  相似文献   

9.
Stroke is a major complication of cardiovascular surgery, resulting in over 100,000 deaths and over a million postoperative encephalopathies annually in the US and Europe. While mitigating damage from stroke after it occurs has proven elusive, opportunities to reduce the incidence and/or severity of stroke prior to surgery in at-risk individuals remain largely unexplored. We tested the potential of short-term preoperative dietary restriction to provide neuroprotection in rat models of focal stroke. Rats were preconditioned with either three days of water-only fasting or six days of a protein free diet prior to induction of transient middle cerebral artery occlusion using two different methods, resulting in either a severe focal stroke to forebrain and midbrain, or a mild focal stroke localized to cortex only. Infarct volume, functional recovery and molecular markers of damage and protection were assessed up to two weeks after reperfusion. Preoperative fasting for 3 days reduced infarct volume after severe focal stroke. Neuroprotection was associated with modulation of innate immunity, including elevation of circulating neutrophil chemoattractant C-X-C motif ligand 1 prior to ischemia and suppression of striatal pro-inflammatory markers including tumor necrosis factor α, its receptor and downstream effector intercellular adhesion molecule-1 after reperfusion. Similarly, preoperative dietary protein restriction for 6 days reduced ischemic injury and improved functional recovery in a milder cortical infarction model. Our results suggest that short-term dietary restriction regimens may provide simple and translatable approaches to reduce perioperative stroke severity in high-risk elective vascular surgery.  相似文献   

10.
Our previous studies have demonstrated that oxysophoridine (OSR) has protective effects on cerebral neurons damage in vitro induced by oxygen and glucose deprivation. In this study, we further investigated whether OSR could reduce ischemic cerebral injury in vivo and its possible mechanism. Male Institute of cancer research mice were intraperitoneally injected with OSR (62.5, 125 and 250 mg/kg) for seven successive days, then subjected to brain ischemia induced by the model of middle cerebral artery occlusion. After reperfusion, neurological scores and infarct volume were estimated. Morphological examination of tissues was performed. Apoptotic neurons were detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining. Oxidative stress levels were assessed by measurement of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. The expression of various apoptotic markers as Caspase-3, Bax and Bcl-2 were investigated by immunohistochemistry and Western-blot analysis. OSR pretreatment groups significantly reduced infract volume and neurological deficit scores. OSR decreased the percentage of apoptotic neurons, relieved neuronal morphological damage. Moreover, OSR markedly decreased MDA content, and increased SOD, GSH-Px activities. Administration of OSR (250 mg/kg) significantly suppressed overexpression of Caspase-3 and Bax, and increased Bcl-2 expression. These findings indicate that OSR has a protective effect on focal cerebral ischemic injury through antioxidant and anti-apoptotic mechanisms.  相似文献   

11.
After stroke, the brain has shown to be able to achieve spontaneous functional recovery despite severe cerebral damage. This phenomenon is poorly understood. To address this issue, focal transient ischemia was induced by 60 min middle cerebral artery occlusion in Wistar rats. The evolution of stroke was followed using two magnetic resonance imaging modalities: diffusion spectrum imaging (acquired before, one and four weeks after stroke) and functional magnetic resonance imaging (acquired before and five weeks after stroke). To confirm the imaging observations, immunohistochemical staining for myelin, astrocytes and macrophages/microglia was added. At four weeks after stroke, a focal alteration of the diffusion anisotropy was observed between the ipsilesional ventricle and the lesion area. Using tractography this perturbation was identified as reorganization of the ipsilesional internal capsule. Functional imaging at five weeks after ischemia demonstrated activation of the primary sensorimotor cortex in both hemispheres in all rats except one animal lacking a functional response in the ipsilesional cortex. Furthermore, fiber tracking showed a transhemispheric fiber connection through the corpus callosum, which-in the rat without functional recovery-was lost. Our study shows the influence of the internal capsule reorganization, combined with inter-hemispheric connections though the corpus callosum, on the functional activation of the brain from stroke. In conclusion, tractography opens a new door to non-invasively investigate the structural correlates of lack of functional recovery after stroke.  相似文献   

12.
大鼠局灶性脑缺血模型的有效制备   总被引:1,自引:0,他引:1  
目的比较三种不同手术方法制作大鼠永久性脑缺血模型的效果,包括死亡率、神经功能评分、脑梗死体积、手术效率。方法将采用不同手术方法制备脑缺血模型的大鼠随机分为三组。1组在术中分别结扎颈总动脉(CCA)、颈外动脉(ECA)、枕动脉、翼腭动脉,并且用动脉夹对颈内动脉(ICA)进行临时夹闭;2组在术中分别结扎颈总动脉、颈外动脉,暴露枕动脉和翼腭动脉但不结扎,用丝线悬挂颈内动脉而不是用动脉夹夹闭,线栓在显微镜直视下插入颈内动脉越过翼腭动脉起始点至大脑中动脉分叉处;3组只暴露颈总动脉、颈外动脉和颈内动脉,结扎颈总动脉、颈外动脉,丝线悬挂颈内动脉,显微镜下将线栓盲插至颈内动脉大脑中动脉分叉处。分别检测三组模型的死亡率、神经功能评分、梗死体积、手术时间。结果第3组制作动物模型的方法所花费时间平均为17.5 min,死亡率较低,神经功能评分及梗死体积稳定。结论采用第3组手术方法可以缩短手术时间,提高手术效率,能够高效地制作出更加稳定的可用于临床实验的大鼠脑缺血模型。  相似文献   

13.
Here, we have investigated the synergistic effect of quercetin administration and transplantation of human umbilical cord mesenchymal stromal cells (HUMSCs) following middle cerebral artery occlusion in rat. Combining quercetin treatment with delayed transplantation of HUMSCs after local cerebral ischemia significantly (i) improved neurological functional recovery; (ii) reduced proinflammatory cytokines (interleukin(IL)-1β and IL-6), increased anti-inflammatory cytokines (IL-4, IL-10, and transforming growth factor-β1), and reduced ED-1 positive areas; (iii) inhibited cell apoptosis (caspase-3 expression); and (iv) improved the survival rate of HUMSCs in the injury site. Altogether, our results demonstrate that combined HUMSC transplantation and quercetin treatment is a potential strategy for reducing secondary damage and promoting functional recovery following cerebral ischemia.  相似文献   

14.
Ischemia–reperfusion (I/R)-induced spinal cord injury can cause apoptotic damage and subsequently act as a blood–spinal cord barrier damage. MicroRNAs (miRNAs) contributed to the process of I/R injury by regulating their target mRNAs. miR-199a-5p is involved in brain and heart I/R injury; however, its function in the spinal cord is not yet completely clarified. In this study, we investigated the role of miR-199a-5p on spinal cord I/R via the endothelin-converting enzyme 1, especially the apoptosis pathway. In the current study, the rat spinal cord I/R injury model was established, and the Basso Beattie Bresnahan scoring, Evans blue staining, HE staining, and TUNEL assay were used to assess the I/R-induced spinal cord injury. The differentially expressed miRNAs were screened using microarray. miR-199a-5p was selected by unsupervised hierarchical clustering analysis. The dual-luciferase reporter assay was used for detecting the regulatory effects of miR-199a-5p on ECE1. In addition, neuron expression was detected by immunostaining assay, while the expressions of p-ERK, ERK, p-JNK, JNK, caspase-9, Bcl-2, and ECE1 were evaluated by Western blot. The results indicated the successful establishment of the I/R-induced spinal cord injury model; the I/R induced the damage to the lower limb motor. Furthermore, 18 differentially expressed miRNAs were detected in the I/R group compared to the sham group, and miR-199a-5p protected the rat spinal cord injury after I/R. Moreover, miR-199a-5p negatively regulated ECE1, and silencing the ECE1 gene also protected the rat spinal cord injury after I/R. miR-199a-5p or silencing of ECE1 also regulated the expressions of caspase-9, Bcl-2, p-JNK, p-ERK, and ECE1 in rat spinal cord injury after I/R. Therefore, we demonstrated that miR-199a-5p might protect the spinal cord against I/R-induced injury by negatively regulating the ECE1, which could aid in developing new therapeutic strategies for I/R-induced spinal cord injury.  相似文献   

15.

Background

Ischemic postconditioning (IPOC), or relief of ischemia in a stuttered manner, has emerged as an innovative treatment strategy to reduce programmed cell death, attenuate ischemic injuries, and improve neurological outcomes. However, the mechanisms involved have not been completely elucidated. Recent studies indicate that autophagy is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. This study aims to determine the role of autophagy in IPOC-induced neuroprotection against focal cerebral ischemia in rats.

Methodology/Principal Findings

A focal cerebral ischemic model with permanent middle cerebral artery (MCA) occlusion plus transient common carotid artery (CCA) occlusion was established. The autophagosomes and the expressions of LC3/Beclin 1/p62 were evaluated for their contribution to the activation of autophagy. We found that autophagy was markedly induced with the upregulation of LC3/Beclin 1 and downregulation of p62 in the penumbra at various time intervals following ischemia. IPOC, performed at the onset of reperfusion, reduced infarct size, mitigated brain edema, inhibited the induction of LC3/Beclin 1 and reversed the reduction of p62 simultaneously. Rapamycin, an inducer of autophagy, partially reversed all the aforementioned effects induced by IPOC. Conversely, autophagy inhibitor 3-methyladenine (3-MA) attenuated the ischemic insults, inhibited the activation of autophagy, and elevated the expression of anti-apoptotic protein Bcl-2, to an extent comparable to IPOC.

Conclusions/Significance

The present study suggests that inhibition of the autophagic pathway plays a key role in IPOC-induced neuroprotection against focal cerebral ischemia. Thus, pharmacological inhibition of autophagy may provide a novel therapeutic strategy for the treatment of stroke.  相似文献   

16.
Neurochemical Research - This study was designed to evaluate the underlying protective mechanisms of oleuropein involved in alleviating brain damage in a rat model of ischemic stroke. Male Wistar...  相似文献   

17.
The blood-brain barrier permeability of the competitive N-methyl-D-aspartate receptor antagonist CGS-19755 [cis-4-(phosphonomethyl)-2-piperidine carboxylic acid] was assessed in normal and ischemic rat brain. The brain uptake index of CGS-19755 relative to iodoantipyrine was assessed using the Oldendorf technique in normal brain. The average brain uptake index in brain regions supplied by the middle cerebral artery was 0.15 +/- 0.35% (mean +/- SEM). The unidirectional clearance of CGS-19755 from plasma across the blood-brain barrier was determined from measurements of the volume of distribution of CGS-19755 in brain. These studies were performed in normal rats and in rats with focal cerebral ischemia produced by combined occlusion of the proximal middle cerebral artery and ipsilateral common carotid artery. In normal rats the regional plasma clearance across the blood-brain barrier was low, averaging 0.015 ml 100 g-1 min-1. In ischemic rats this clearance value averaged 0.019 ml 100 g-1 min-1 in the ischemic hemisphere and 0.009 ml 100 g-1 min-1 in the nonischemic hemisphere. No significant regional differences in plasma clearance of CGS-19755 were observed in either normal or ischemic rats except in cortex injured by electrocautery where a 14-fold increase in clearance across the blood-brain barrier was measured. We conclude that CGS-19755 crosses the blood-brain barrier very slowly, even in acutely ischemic tissue.  相似文献   

18.
Remote ischemic perconditioning (RIPer) has been proved to provide potent cardioprotection. However, there are few studies on neuroprotection of RIPer. This study aims to clarify the neuroprotective effect of RIPer and the role of autophagy induced by RIPer against cerebral ischemia reperfusion injury in rats. Using a transient middle cerebral artery occlusion (MCAO) model in rats to imitate focal cerebral ischemia. RIPer was carried out 4 cycles of 10 min ischemia and 10 min reperfusion, with a thin elastic band tourniquet encircled on the bilateral femoral arteries at the start of 10 min after MCAO. Autophagy inhibitor 3-methyladenine (3-MA) and autophagy inducer rapamycin were administered respectively to determine the contribution of autophagy in RIPer. Neurologic deficit scores, infarct volume, brain edema, Nissl staining, TUNEL assay, immunohistochemistry and western blot was performed to analyze the neuroprotection of RIPer and the contribution of autophagy in RIPer. RIPer significantly exerted neuroprotective effects against cerebral ischemia reperfusion injury in rats, and the autophagy-lysosome pathway was activated by RIPer treatment. 3-MA reversed the neuroprotective effects induced by RIPer, whereas rapamycin ameliorated the brain ischemic injury. Autophagy activation contributes to the neuroprotection by RIPer against focal cerebral ischemia in rats.  相似文献   

19.
The activation of the [Ca2+]-dependent cysteine protease calpain plays an important role in ischemic injury. Here, the levels of two calpain-specific substrates, p35 protein and eukaryotic initiation factor 4G (eIF4G), as well as its physiological regulator calpastatin, were investigated in a rat model of transient global cerebral ischemia with or without ischemic tolerance (IT). Extracts of the cerebral cortex, whole hippocampus and hippocampal subregions after 30 min of ischemia and different reperfusion times (30 min and 4 h) were used. In rats without IT, the p35 levels slightly decreased after ischemia or reperfusion, whereas the levels of p25 (the truncated form of p35) were much higher than those in sham control rats after ischemia and remained elevated during reperfusion. The eIF4G levels deeply diminished after reperfusion and the decrease was significantly greater in CA1 and the rest of the hippocampus than in the cortex. By contrast, the calpastatin levels did not significantly decrease during ischemia or early reperfusion, but were upregulated after 4 h of reperfusion in the cortex. Although IT did not promote significant changes in p35 and p25 levels, it induced a slight increase in calpastatin and eIF4G levels in the hippocampal subregions after 4 h of reperfusion.  相似文献   

20.
采用线栓法制备大鼠大脑中动脉栓塞(middlecerebralarteryocclusion,MCAO)模型,在额叶皮层用KCl诱导产生皮层扩散性抑制(corticalspreadingdepression,CSD)。MCAO4h后,利用550nm内源信号光学成像(opticalintrin-sicsignalimaging,OISI)监测局灶性脑缺血后大鼠顶-枕叶皮层内源光信号变化。成像1h内观测到一系列诱导CSD波(14±3次),CSD波局限于顶-枕叶皮层中央区域扩展,以光强的显著下降为特征;而旁侧区域光强无明显改变,不具备CSD波特征,表明CSD波未传播到该区域。随后TTC染色证明上述旁侧区域已经梗死。实验表明:MCAO后4h,皮层区域旁侧部分会梗死;CSD波的OIS变化可用来区分缺血梗死区和外周供血较为完整区域(未梗死区)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号