首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
SYNOPSIS. In premetamorphic amphibians, the Mauthner cells (M-cells),a single pair of large neurons, are present in the medulla.M-cells differentiate early, are easily recognized morphologically,and in the axolotl embryo, may be approached experimentally:This system is a unique one for the study of neuronal development. The withdrawal of a neuron from the cell division cycle is anearly event in its differentiation. Gastrulae, neurulae andtailbud embryos were each given a single injection of 3H-thymidine.Radioautographs of larvae showed label over M-cell nuclei wheninjections were made before the end of gastrulation, but notwhen injections were made at later stages. Thus, the cells thatgive rise to M-cells cease DNA synthesis during late gastrulation. Unilateral rotations of prospective hindbrain through 180°were performed to see if M-cell axes are specified during neurulation.Rigid axial polarization of the M-cell does not appear to occurin the neurula: The rotated cell regulates and develops normallywith respect to its axes. A major source of input to the M-cell is from the ipsilateralvestibular system. To study the interaction of the M-cell withingrowing axons, unilateral implants of otic vesicles were madeanterior to the otic vesicle in host midtailbud embryos. Preliminarydata suggests a mechanism for the formation of specific neuronalconnections not dependent upon position-time relationships:The ectopic vestibular axons enter the medulla and course caudadto terminate in the region of the ipsilateral M-cell. Whetherthese axons actually form synapses on the M-cell remains tobe established.  相似文献   

2.
Synopsis In certain fish rapid escape responses have been observed to occur from early stages of embryogenesis. It is the purpose of this review to consider the development of one escape pattern, the C-type fast-start. During this behavior the animal initially coils its body into the shape of a letter C, and then rapidly uncoils and propels itself through the water. Relative to body size, the speed of the embryonic and larval C-start is comparable with that of the adult. These responses in the zebrafish, Brachydanio rerio, are utilized in the escape from predators, such as the protozoan Coleps sp. C-starts are triggered by the firing of one of the Mauthner (M-) cells, a single pair of large neurons in the brain stem. These neurons receive a rich supply of connections from sensory and integrative centers in the brain. The M-cells activate the escape movement by driving motor and relay neurons controlling the various muscular contractions associated with the behavior. During hatching, the rupturing of the egg envelope appears to be triggered by strong tail contractions following dissolution of the envelope by hatching enzymes. These contractions are similar to those known to be driven by the M-cell. The M-cell fires spontaneously up to the normal time of emergence from the egg, but is quiescent afterwards. This spontaneous activity of the M-cell may result in behavior that helps to break the egg envelope. The M-cell also reliably fires to repeated stimulation up to about the normal time of hatching, but habituates rapidly thereafter. We suggest that the M-cell may be utilized in escaping from the egg when it is under attack by a small predator.  相似文献   

3.
Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord.  相似文献   

4.
Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord.  相似文献   

5.
6.
7.
《Autophagy》2013,9(5):642-644
The transparency, external development and simple drug administration of zebrafish embryos makes them a useful model for studying autophagy during embryonic development in vivo. Cloning of zebrafish lc3 and generation of a transgenic GFP-Lc3 fish line provide excellent tools to monitor autophagy in this organism.1 This protocol discusses several convenient autophagy assays in zebrafish, including immunoblotting of Lc3 lipidation, microscopy imaging of GFP-Lc3 and lysosomal staining.  相似文献   

8.
Neurovascular development in the embryonic zebrafish hindbrain   总被引:1,自引:0,他引:1  
The brain is made of billions of highly metabolically active neurons whose activities provide the seat for cognitive, affective, sensory and motor functions. The cerebral vasculature meets the brain's unusually high demand for oxygen and glucose by providing it with the largest blood supply of any organ. Accordingly, disorders of the cerebral vasculature, such as congenital vascular malformations, stroke and tumors, compromise neuronal function and survival and often have crippling or fatal consequences. Yet, the assembly of the cerebral vasculature is a process that remains poorly understood. Here we exploit the physical and optical accessibility of the zebrafish embryo to characterize cerebral vascular development within the embryonic hindbrain. We find that this process is primarily driven by endothelial cell migration and follows a two-step sequence. First, perineural vessels with stereotypical anatomies are formed along the ventro-lateral surface of the neuroectoderm. Second, angiogenic sprouts derived from a subset of perineural vessels migrate into the hindbrain to form the intraneural vasculature. We find that these angiogenic sprouts reproducibly penetrate into the hindbrain via the rhombomere centers, where differentiated neurons reside, and that specific rhombomeres are invariably vascularized first. While the anatomy of intraneural vessels is variable from animal to animal, some aspects of the connectivity of perineural and intraneural vessels occur reproducibly within particular hindbrain locales. Using a chemical inhibitor of VEGF signaling we determine stage-specific requirements for this pathway in the formation of the hindbrain vasculature. Finally, we show that a subset of hindbrain vessels is aligned and/or in very close proximity to stereotypical neuron clusters and axon tracts. Using endothelium-deficient cloche mutants we show that the endothelium is dispensable for the organization and maintenance of these stereotypical neuron clusters and axon tracts in the early hindbrain. However, the cerebellum's upper rhombic lip and the optic tectum are abnormal in clo. Overall, this study provides a detailed, multi-stage characterization of early zebrafish hindbrain neurovascular development with cellular resolution up to the third day of age. This work thus serves as a useful reference for the neurovascular characterization of mutants, morphants and drug-treated embryos.  相似文献   

9.
10.
In the embryonic zebra fish as early as 40 hr after fertilization, the Mauthner cells (M-cells) initiate an escape response, elicited by tactile-vibrational stimulation. The initial part of this behavior is similar to the acoustic startle reflex seen during the larval stage which begins at 96 hr. The embryonic response is directional and is followed by a series of strong tail flexures which are more pronounced than those during swimming. In the embryo the M-cell fired at the beginning of the response and rarely fired again during subsequent contractions; in our experiments the M-cell did not mediate iterative movements of the tail. The M-cell system is probably involved in evoked hatching behavior, as the tactile response is sufficient to rupture the egg membrane and allow the animal to escape. The M-cell sometimes fired spontaneously, which suggests that it might function also in spontaneous hatching behavior which occurs in the absence of phasic stimulation. At 48 hr the M-cell has morphologically mature synapses on its soma and dendrites, but its cytoplasm is relatively undifferentiated; it has few oriented neurofilaments and no distinct axon hillock. During these stages the extracellular M-spike is longer in duration and smaller in amplitude than at later times when the cell is more mature morphologically. Our data suggest that long-term inhibitory control of the M-cell system begins to function at about the time of hatching. At this time the cell is morphologically mature and is richly supplied with synaptic endings over its soma and dendrites.  相似文献   

11.
Layer 4 (L4) of primary visual cortex (V1) is the main recipient of thalamocortical fibers from the dorsal lateral geniculate nucleus (LGNd). Thus, it is considered the main entry point of visual information into the neocortex and the first anatomical opportunity for intracortical visual processing before information leaves L4 and reaches supra- and infragranular cortical layers. The strength of monosynaptic connections from individual L4 excitatory cells onto adjacent L4 cells (unitary connections) is highly malleable, demonstrating that the initial stage of intracortical synaptic transmission of thalamocortical information can be altered by previous activity. However, the inhibitory network within L4 of V1 may act as an internal gate for induction of excitatory synaptic plasticity, thus providing either high fidelity throughput to supragranular layers or transmittal of a modified signal subject to recent activity-dependent plasticity. To evaluate this possibility, we compared the induction of synaptic plasticity using classical extracellular stimulation protocols that recruit a combination of excitatory and inhibitory synapses with stimulation of a single excitatory neuron onto a L4 cell. In order to induce plasticity, we paired pre- and postsynaptic activity (with the onset of postsynaptic spiking leading the presynaptic activation by 10ms) using extracellular stimulation (ECS) in acute slices of primary visual cortex and comparing the outcomes with our previously published results in which an identical protocol was used to induce synaptic plasticity between individual pre- and postsynaptic L4 excitatory neurons. Our results indicate that pairing of ECS with spiking in a L4 neuron fails to induce plasticity in L4-L4 connections if synaptic inhibition is intact. However, application of a similar pairing protocol under GABAARs inhibition by bath application of 2μM bicuculline does induce robust synaptic plasticity, long term potentiation (LTP) or long term depression (LTD), similar to our results with pairing of pre- and postsynaptic activation between individual excitatory L4 neurons in which inhibitory connections are not activated. These results are consistent with the well-established observation that inhibition limits the capacity for induction of plasticity at excitatory synapses and that pre- and postsynaptic activation at a fixed time interval can result in a variable range of plasticity outcomes. However, in the current study by virtue of having two sets of experimental data, we have provided a new insight into these processes. By randomly mixing the assorting of individual L4 neurons according to the frequency distribution of the experimentally determined plasticity outcome distribution based on the calculated convergence of multiple individual L4 neurons onto a single postsynaptic L4 neuron, we were able to compare then actual ECS plasticity outcomes to those predicted by randomly mixing individual pairs of neurons. Interestingly, the observed plasticity profiles with ECS cannot account for the random assortment of plasticity behaviors of synaptic connections between individual cell pairs. These results suggest that connections impinging onto a single postsynaptic cell may be grouped according to plasticity states.  相似文献   

12.
In the developing amphibian, the formation of extra vestibular contacts on the Mauthner cell (M-cell) enhances dendritic branching, while deprivation reduces it (Goodman and Model, 1988a). The mechanism underlying the interaction between afferent fibers and developing dendritic branches is not known; neural activity may be an essential component of the stimulating effect. We examined the role of afferent impulse activity in the regulation of M-cell dendritic branching in the axolotl (Ambystoma mexicanum) embryo. M-cells occur as a pair of large, uniquely identifiable neurons in the axolotl medulla. Synapses from the ipsilateral vestibular nerve (nVIII) are restricted to a highly branched region of the M-cell lateral dendrite. We varied the amount of nVIII innervation and eliminated neural activity. First, unilateral transplantation of a vestibular primordium deprived some M-cells of nVIII innervation and superinnervated others. Second, surgical fusion of axolotls to TTX-harboring California newt (Taricha torosa) embryos paralyzed the Ambystoma twin: voltage-sensitive Na+ channel blockade by TTX eliminated action potential propagation. Reconstruction of M-cells in 18 mm larvae revealed that dendritic growth was influenced by in-growing axons even in the absence of incoming impulses: impulse blockade had no effect on the stimulation of dendritic growth by the afferent fibers.  相似文献   

13.
The ultrastructure of the Mauthner cells (M-cells) and the behaviour of Xenopus laevis tadpoles, reared from eggs under increased gravity (2.9 g) which changes the activity of an afferent vestibular input, were investigated. Besides, a study was made of tadpoles after the hindbrain ablation at earlier embryonal stages which significantly altered the microenvironment of M-cells. It is shown that experimental treatments enhance the proliferation of endoplasmic reticulum and its derivatives, so called subsurface cisterns, in the subsynaptic areas. Some structural changes of the synaptic active zones and the cytoskeleton of M-cells were also noticed. It is assumed that the development of the endoplasmic reticulum promotes an intense removal of calcium ions from subsynaptic areas. The plasticity of the endoplasmic reticulum together with other ultrastructural changes apparently stipulate the adaptation of neurons to changed conditions of functioning.  相似文献   

14.
A neural degeneration mutation that spares primary neurons in the zebrafish   总被引:8,自引:0,他引:8  
We describe an embryonic lethal mutation in the zebrafish Brachydanio rerio that specifically affects the viability of most cells in the embryonic central nervous system (CNS). The mutation ned-1 (b39rl) was induced with gamma-irradiation and segregates as a single recessive allele closely linked to its centromere. It produces massive cell death in the CNS but a small set of specific neurons, including Rohon-Beard sensory neurons, large hindbrain interneurons, and primary motoneurons, survive embryogenesis and are functional. Synaptic connections between embryonic motoneurons and muscle cells appear physiologically normal, and the normally observed spontaneous flexions are present. Correlated with the presence of sensory neurons and interneurons, mutant embryos display reflexive movements in response to mechanical stimulation. Together, the surviving neurons, called primary neurons, form a class of cells that are prominent in size and arise early during development. Thus, this mutation may define a function that is differentially required by developmentally distinguishable sets of cells in the embryonic CNS.  相似文献   

15.
Recent experimental results by Talathi et al. (Neurosci Lett 455:145–149, 2009) showed a divergence in the spike rates of two types of population spike events, representing the putative activity of the excitatory and inhibitory neurons in the CA1 area of an animal model for temporal lobe epilepsy. The divergence in the spike rate was accompanied by a shift in the phase of oscillations between these spike rates leading to a spontaneous epileptic seizure. In this study, we propose a model of homeostatic synaptic plasticity which assumes that the target spike rate of populations of excitatory and inhibitory neurons in the brain is a function of the phase difference between the excitatory and inhibitory spike rates. With this model of homeostatic synaptic plasticity, we are able to simulate the spike rate dynamics seen experimentally by Talathi et al. in a large network of interacting excitatory and inhibitory neurons using two different spiking neuron models. A drift analysis of the spike rates resulting from the homeostatic synaptic plasticity update rule allowed us to determine the type of synapse that may be primarily involved in the spike rate imbalance in the experimental observation by Talathi et al. We find excitatory neurons, particularly those in which the excitatory neuron is presynaptic, have the most influence in producing the diverging spike rates and causing the spike rates to be anti-phase. Our analysis suggests that the excitatory neuronal population, more specifically the excitatory to excitatory synaptic connections, could be implicated in a methodology designed to control epileptic seizures.  相似文献   

16.
The Mauthner (M-) cells, a bilateral pair of medullary neurons in fish, initiate the characteristic “C-start” predatory escape response of teleosts. Similar movements have been described during hatching, social interactions, and feeding. M-cell firing, however, has not been correlated directly with these other behaviors. The objective of this study was to determine whether the M-cell, in addition to escape, plays a role in feeding.
  1. Goldfish were chronically implanted with electrodes positioned near the axon cap of one of the two M-cells. Subsequently, M-cell activity was monitored for up to 8 days while fish were surface feeding on live crickets.
  2. The M-cell fires and the fish performs a C-shaped flexion in association with the terminal phase of prey capture. Thus, the M-cell is active in the context of at least two behaviors, predator escape and prey capture, and may be considered a part of behaviorally shared neural circuitry.
  3. For the goldfish, Mauthner-initiated flexions during feeding rapidly remove the prey from the water's surface and minimizes the fish's own susceptibility to surface predation. Other species may possess a diverse repertoire of Mauthner-mediated feeding behaviors that depend on their adaptive specializations for predation. Moreover, group competition between predators and their prey may have facilitated a “neural arms race” for M-cell morphology and physiology.
  相似文献   

17.
The proper development and maturation of neuronal circuits require precise migration of component neurons from their birthplace (germinal zone) to their final positions. Little is known about the effects of aberrant neuronal position on the functioning of organized neuronal groups, especially in mammals. Here, we investigated the formation and properties of brainstem respiratory neurons in looptail (Lp) mutant mice in which facial motor neurons closely apposed to some respiratory neurons fail to migrate due to loss of function of the Wnt/Planar Cell Polarity (PCP) protein Vangl2. Using calcium imaging and immunostaining on embryonic hindbrain preparations, we found that respiratory neurons constituting the embryonic parafacial oscillator (e-pF) settled at the ventral surface of the medulla in Vangl2Lp/+ and Vangl2Lp/Lp embryos despite the failure of tangential migration of its normally adjacent facial motor nucleus. Anatomically, the e-pF neurons were displaced medially in Lp/+ embryos and rostro-medially Lp/Lp embryos. Pharmacological treatments showed that the e-pF oscillator exhibited characteristic network properties in both Lp/+ and Lp/Lp embryos. Furthermore, using hindbrain slices, we found that the other respiratory oscillator, the preBötzinger complex, was also anatomically and functionally established in Lp mutants. Importantly, the displaced e-pF oscillator established functional connections with the preBötC oscillator in Lp/+ mutants. Our data highlight the robustness of the developmental processes that assemble the neuronal networks mediating an essential physiological function.  相似文献   

18.
Steps during the development of the zebrafish locomotor network.   总被引:1,自引:0,他引:1  
This review summarizes recent data from our lab concerning the development of motor activities in the developing zebrafish. The zebrafish is a leading model for studies of vertebrate development because one can obtain a large number of transparent, externally and rapidly developing embryos with motor behaviors that are easy to assess (e.g. for mutagenic screens). The emergence of embryonic motility was studied behaviorally and at the cellular level. The embryonic behaviors appear sequentially and include an early, transient period of spontaneous, alternating tail coilings, followed by responses to touch, and swimming. Patch clamp recording in vivo revealed that an electrically coupled network of a subset of spinal neurons generates spontaneous tail coiling, whereas a chemical (glutamatergic and glycinergic) synaptic drive underlies touch responses and swimming and requires input from the hindbrain. Swimming becomes sustained in larvae once serotonergic neuromodulatory effects are integrated. We end with a brief overview of the genetic tools available for the study of the molecular determinants implicated in locomotor network development in the zebrafish. Combining genetic, behavioral and cellular experimental approaches will advance our understanding of the general principles of locomotor network assembly and function.  相似文献   

19.
We have previously identified a novel protein kinase, pk146, in the brain of Tetraodon. In the present study, we cloned the homologous protein kinase gene encoding a protein of 385 amino acid residues from zebrafish. The overall amino acid sequence and the kinase domain of zebrafish BSK146 shows 48% and 69% identity to that of rat sbk, a SH3-containing serine/threonine protein kinase. By whole-mount in situ hybridization and RT-PCR, the expression of bsk146 mRNA was mainly in the brain. To explore the in vivo function of BSK146 during zebrafish development, we used morpholino knockdown approach and found that BSK146 morphants displayed enlarged hindbrain ventricle and smaller eyes. Whole-mount in situ hybridization was further performed to analyze the brain defects in BSK146-MO-injected embryos. The expression of brain-specific markers, such as otx2, pax2.1, and krox20, was found normal in morphant embryos at 24hpf, while expression of pax2.1 exerted changes in midbrain-hindbrain boundary and hindbrain in morphant embryos at 48hpf. These data suggest that BSK146 may play an important role in later ventricle expansion in zebrafish brain development. Although the recombinant BSK146 protein produced in insect cells was active and could phosphorylate both histone H1 and histone 2B, the endogenous substrate of BSK146 in the embryonic brain of zebrafish is not clear at the present time and needs further investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号