首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Ribonucleases (RNases) maintain the cellular RNA pool by RNA processing and degradation. In many bacteria, including the human pathogen Mycobacterium tuberculosis (Mtb), the enzymes mediating several central RNA processing functions are still unknown. Here, we identify the hypothetical Mtb protein Rv2179c as a highly divergent exoribonuclease. Although the primary sequence of Rv2179c has no detectable similarity to any known RNase, the Rv2179c crystal structure reveals an RNase fold. Active site residues are equivalent to those in the DEDD family of RNases, and Rv2179c has close structural homology to Escherichia coli RNase T. Consistent with the DEDD fold, Rv2179c has exoribonuclease activity, cleaving the 3′ single-strand overhangs of duplex RNA. Functional orthologs of Rv2179c are prevalent in actinobacteria and found in bacteria as phylogenetically distant as proteobacteria. Thus, Rv2179c is the founding member of a new, large RNase family with hundreds of members across the bacterial kingdom.  相似文献   

4.
Tuberculosis (TB) remains one of the most worrying infectious diseases affecting public health around the world; 8.7 million new TB cases were reported in 2011. The search for an Mycobacterium tuberculosis H37Rv protein sequence which is functionally important in host-pathogen interaction has been proposed for developing a new vaccine which will allow efficient and safe control of the spread of this disease.The present study thus reports the results obtained for the Rv1268c protein described in the M. tuberculosis H37Rv genome as a hypothetical unknown, probably secreted, protein based on a highly robust, specific, sensitive and functional approach to the search for potential epitopes to be included in an anti-tuberculosis vaccine. Rv1268c presence was determined by immunoblotting after obtaining polyclonal sera against mycobacterial total sonicate or subcellular fractions. Such sera were used in electron immunomicroscopy (EIM) for confirming protein localisation on the M. tuberculosis envelop by recognising colloidal gold-labelled immunoglobulin. Screening assays revealed the presence of two sequences having high binding activity: one binding A549 alveolar epithelial cells (141TGMAALEQYLGSGHAVIVSI160) and other binding U937 monocyte-derived macrophages (21AVALGLASPADAAAGTMYGD40). Such sequences’ ability to inhibit mycobacterial entry during in vitro assays was analysed. The structure of synthetic peptides binding to target cells was also determined, bearing in mind the structure–function relationship. These results, together with those obtained for other proteins, have been involved in selecting peptides which might be included in a subunit-based anti-tuberculosis vaccine.  相似文献   

5.
Many proteins exert their functions through a protein complex and protein–protein interactions. However, the study of these types of interactions is complicated when dealing with toxic or hydrophobic proteins. It is difficult to use the popular Escherichia coli host for their expression, as these proteins in all likelihood require a critical partner protein to ensure their proper folding and stability. In the present study, we have developed a novel co-expression vector, pHEX, which is compatible with, and thus can be partnered with, many commercially available E. coli vectors, such as pET, pGEX and pMAL. The pHEX contains the p15A origin of replication and a T7 promoter, which can over-produce a His-tagged recombinant protein. The new co-expression system was demonstrated to efficiently co-produce and co-purify heterodimeric protein complexes, for example PE25/PPE41 (Rv2430c/Rv2431c) and ESAT6/CFP10 (Rv3874/Rv3875), from the human pathogen Mycobacterium tuberculosis H37Rv. Furthermore, the system was also effectively used to characterize protein–protein interactions through convenient affinity tags. Using an in vivo pull-down assay, for the first time we have confirmed the presence of three pairs of PE/PPE-related novel protein interactions in this pathogen. In summary, a convenient and efficient co-expression vector system has been successfully developed. The new system should be applicable to any protein complex or any protein–protein interaction of interest in a wide range of biological organisms.  相似文献   

6.
7.
8.
Identifying Mycobacterium tuberculosis membrane proteins involved in binding to and invasion of host cells is important in designing subunit-based anti-tuberculosis vaccines. The Rv2969c gene sequence was identified by PCR in M. tuberculosis complex strains, being transcribed in M. tuberculosis H37Rv, M. tuberculosis H37Ra, and M. bovis BCG. Rabbits immunized with synthetic peptides from highly specific conserved regions of this protein produced antibodies recognizing 27 and 29 kDa bands in M. tuberculosis lysate, which is consistent with the molecular weight of the Rv2969c gene product in M. tuberculosis H37Rv. Immunoelectron microscopy revealed the protein was localized on the bacillus surface. Four and three specific high activity binding peptides (HABPs) to the A549 alveolar epithelial and U937 monocyte cell lines were found, respectively. Two of the HABPs found inhibited M. tuberculosis invasion of A549 cells, suggesting that these peptides might be good candidates to be included in a multiepitopic, subunit-based anti-tuberculosis vaccine.  相似文献   

9.
The Molybdenum cofactor (Moco) biosynthesis pathway is an evolutionary conserved pathway seen in almost all eukaryotes including the pathogenic species Mycobacterium tuberculosis. This pathway comprises of several novel reactions which include the initial formation of precursor Z from guanosine triphosphate (GTP), catalysed by two enzymes MoaA and MoaC. Although Moco biosynthesis is well understood, the first step is still not clear. In M. tuberculosis H37Rv, three orthologous genes of MoaC have been annotated: moaC1 (Rv3111), moaC2 (Rv0864) and moaC3 (Rv3324c). Rv0864 (MoaC2) is a 17.5 kDa protein and is reported to be down-regulated by ∼3 times in the nutrient starvation model for Mycobacterium tuberculosis. The crystal structure of Moco-biosynthesis protein MoaC2 from Mycobacterium tuberculosis (2.20 Å resolution, space group P213) has been determined. Based on a comparative analysis of structures of homologous proteins, conserved residues were identified and are implicated in structural and functional roles. Molecular docking studies with probable ligands carried out in order to identify its ligand, suggests that pteridinebenzomonophosphate as the most likely ligand. Sequence based interaction study identified MoaA1 to interact with MoaC2. A homology model of MoaA1 was then complexed with MoaC2 and protein–protein interactions are also discussed.  相似文献   

10.
Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG) has been used as a tuberculosis (TB) vaccine since its development in 1921. BCG induces robust T helper 1 (Th1) immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb) infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6), expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1) exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1). However, TLR-2 knockout (TLR-2-/-) animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a) in dendritic cells (DCs), whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy.  相似文献   

11.
Mycobacteria harbor a unique class of adenylyl cyclases with a complex domain organization consisting of an N-terminal putative adenylyl cyclase domain fused to a nucleotide-binding adaptor shared by apoptotic protease-activating factor-1, plant resistance proteins, and CED-4 (NB-ARC) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal helix-turn-helix (HTH) domain. The products of the rv0891c-rv0890c genes represent a split gene pair, where Rv0891c has sequence similarity to adenylyl cyclases, and Rv0890c harbors the NB-ARC-TPR-HTH domains. Rv0891c had very low adenylyl cyclase activity so it could represent a pseudoenzyme. By analyzing the genomic locus, we could express and purify Rv0890c and find that the NB-ARC domain binds ATP and ADP, but does not hydrolyze these nucleotides. Using systematic evolution of ligands by exponential enrichment (SELEX), we identified DNA sequences that bound to the HTH domain of Rv0890c. Uniquely, the HTH domain could also bind RNA. Atomic force microscopy revealed that binding of Rv0890c to DNA was sequence independent, and binding of adenine nucleotides to the protein induced the formation of higher order structures that may represent biocrystalline nucleoids. This represents the first characterization of this group of proteins and their unusual biochemical properties warrant further studies into their physiological roles in future.  相似文献   

12.
The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates.  相似文献   

13.
14.
The open reading frame Rv2228c from Mycobacterium tuberculosis is predicted to encode a protein composed of two domains, each with individual functions, annotated through sequence similarity searches. The N-terminal domain is homologous with prokaryotic and eukaryotic RNase H domains and the C-terminal domain with α-ribazole phosphatase (CobC). The N-terminal domain of Rv2228c (Rv2228c/N) and the full-length protein were expressed as fusions with maltose binding protein (MBP). Rv2228c/N was shown to have RNase H activity with a hybrid RNA/DNA substrate as well as double-stranded RNase activity. The full-length protein was shown to have additional CobC activity. The crystal structure of the MBP-Rv2228c/N fusion protein was solved by molecular replacement and refined at 2.25-Å resolution (R = 0.182; Rfree = 0.238). The protein is monomeric in solution but associates in the crystal to form a dimer. The Rv2228c/N domain has the classic RNase H fold and catalytic machinery but lacks several surface features that play important roles in the cleavage of RNA/DNA hybrids by other RNases H. The absence of either the basic protrusion of some RNases H or the hybrid binding domain of others appears to be compensated by the C-terminal CobC domain in full-length Rv2228c. The double-stranded-RNase activity of Rv2228c/N contrasts with classical RNases H and is attributed to the absence in Rv2228c/N of a key phosphate binding pocket.The bacterium Mycobacterium tuberculosis is the causative agent of the disease tuberculosis (TB), which kills 2 million to 3 million people worldwide every year. One-third of the world''s population has latent infection, and 10% of these will develop the active form of the disease. The evolution of multidrug-resistant strains and the increase in HIV-related immunocompromisation have led to serious reemergence of the disease. The sequencing and annotation of the M. tuberculosis genome (9) have enabled a fuller evaluation of the biology of this important human pathogen and the identification of new potential targets for anti-TB drug discovery, although annotations are potentially compromised by the absence of direct structural or functional data (5). Some examples of misannotations have already been noted (6, 20, 46).An area of direct relevance to the emergence of drug-resistant strains of M. tuberculosis is that of DNA replication and repair (3). Although many genes homologous to the DNA repair machinery of other organisms can be recognized, some apparent absences have been noted (29). Here, we focus on an unusual gene product, Rv2228c, which is annotated as a bifunctional, two-domain protein, comprising an N-terminal RNase H domain and a C-terminal domain homologous with α-ribazole phosphatase (CobC), presumed to act in vitamin B12 biosynthesis.The RNases H are a family of endonucleases that specifically degrade the RNA of RNA/DNA hybrids (43). These enzymes are found in eukaryotes, bacteria, archaea, and retroviruses, where they have essential roles in DNA replication and repair (11, 17, 19, 22, 32). They are highly variable in size, sequence, and specificity, making classification difficult. Most commonly, they are divided into two classes: type 1 and type 2. The classical type 1 RNase H enzymes are encoded by the rnhA gene and are typically less than 20 kDa in size, although N-terminal and C-terminal extensions frequently provide additional domains that modulate function (8, 44). Eukaryotic RNase HI enzymes, for example, have N-terminal hybrid binding domains that precede the C-terminal catalytic domain (7). The type 2 RNase H enzymes, encoded by the rnhB or rnhC gene, are typically larger and more diverse in sequence but nevertheless have in common a similar RNase H catalytic domain (7).The M. tuberculosis genome contains no classical rnhA gene, although one rnhB gene, encoding Rv2902c, is present. BLAST searches do, however, identify the N-terminal domain of the open reading frame Rv2228c (Rv2228c/N) as having 31% sequence identity with RNase HI from Escherichia coli (EcRNaseH) and 23% identity with human RNase HI (HsRnaseH). This leads to the hypothesis that this domain provides the essential RNase HI activity in M. tuberculosis. The C-terminal domain of Rv2228c presents a puzzle, however. It has 34% sequence identity with the α-ribazole phosphatase CobC of Synechococcus sp., but it is also homologous with PhoE from Bacillus subtilis (34% identity) and Rv3214 from M. tuberculosis (28% identity), both of which have acid phosphatase activity (39, 46). Bifunctional proteins similar to Rv2228c are encoded by the genomes of other Actinomycetales bacteria, including those of the Mycobacterium, Streptomyces, Corynebacterium, and Nocardia genera, and one of these bifunctional proteins, SCO2299 from Streptomyces coelicolor, has RNase HI activity in its N-terminal domain and acid phosphatase activity in its C-terminal domain (34).We undertook the structural and functional characterization of Rv2228c/N in order to establish the function of this domain and the possible significance of its associated C-terminal domain. The crystal structure of Rv2228c/N, determined at 2.25-Å resolution as a maltose binding protein (MBP) fusion protein, reveals a classic RNase H fold, but with structural and functional characteristics that make it most like the archaeal RNase H from Sulfolobus tokodaii and differentiate it from classical RNases H. Functional studies confirm the RNase H activity of Rv2228c/N and show that the C-terminal domain has both acid phosphatase and CobC activity, together with a role in enhancing the RNase H activity of the N-terminal domain.  相似文献   

15.
Mycobacterium tuberculosis profoundly exploits protein phosphorylation events carried out by serine/threonine protein kinases (STPKs) for its survival and pathogenicity. Forkhead-associated domains (FHA), the phosphorylation-responsive modules, have emerged as prominent players in STPK mediated signaling. In this study, we demonstrate the association of the previously uncharacterized FHA domain-containing protein Rv0019c with cognate STPK PknB. The consequent phosphorylation of Rv0019c is shown to be dependent on the conserved residues in the Rv0019c FHA domain and activation loop of PknB. Furthermore, by creating deletion mutants we identify Thr36 as the primary phosphorylation site in Rv0019c. During purification of Rv0019c from Escherichia coli, the E. coli protein chloramphenicol acetyltransferase (CAT) specifically and reproducibly copurifies with Rv0019c in a FHA domain-dependent manner. On the basis of structural similarity of E. coli CAT with M. tuberculosis PapA5, a protein involved in phthiocerol dimycocerosate biosynthesis, PapA5 is identified as an interaction partner of Rv0019c. The interaction studies on PapA5, purified as an unphosphorylated protein from E. coli, with Rv0019c deletion mutants reveal that the residues N-terminal to the functional FHA domain of Rv0019c are critical for formation of the Rv0019c-PapA5 complex and thus constitute a previously unidentified phosphoindependent binding motif. Finally, PapA5 is shown to be phosphorylated on threonine residue(s) by PknB, whereas serine/threonine phosphatase Mstp completely reverses the phosphorylation. Thus, our data provides initial clues for a possible regulation of PapA5 and hence the phthiocerol dimycocerosate biosynthesis by PknB, either by direct phosphorylation of PapA5 or indirectly through Rv0019c.  相似文献   

16.
17.
18.
19.
20.
Multidrug-resistant tuberculosis (MDR-TB) is caused by bacteria that are resistant to the most effective anti TB drugs (Isoniazid and Rifampicin) with or without resistance to other drugs. Novel intervention strategies to eliminate this disease based on finding proteins can be used for designing new drugs or new and reliable kits for diagnosis. The aim of this study was to compare the protein profile of MDR-TB with sensitive isolates. Two-dimensional gel electrophoresis (2DE) along with mass spectrometry is a powerful and effective tool to identification and characterization of Mycobacterium tuberculosis. Two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used for diagnosis and comparison of proteins. We identified 14 protein spots in MDR-TB isolates that 2DE analysis showed these spots absent in M. tuberculosis sensitive isolates (Rv1876, Rv0379, Rv0147, Rv2031c, Rv3597c, Rv1886c, MT0493, Rv0440, Rv3614c, Rv1626, Rv0443, Rv0475, Rv3057 and unknown protein. The results showed 22 protein spots which were up regulated (or expressed) by the MDR-TB isolates, (Rv1240, Rv3028c, Rv2971, Rv2114c, Rv3311, Rv3699, Rv1023, Rv1308, Rv3774, Rv0831c, Rv2890c, Rv1392, Rv0719, Rv0054, Rv3418c, Rv0462, Rv2215, Rv2986c, Rv3248c and Rv1908c)). Two up regulated protein spots were identified in sensitive isolate (Rv1133c and Rv0685). These data will provide valuable clues in further investigation for suitable TB rapid tests or drug targets against drug resistant and sensitive of M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号