首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulator of G protein signaling (RGS) proteins play essential roles in the regulation of signaling via G protein-coupled receptors (GPCRs). With hundreds of GPCRs and dozens of G proteins, it is important to understand how RGS regulates selective GPCR-G protein signaling. In neurons of the striatum, two RGS proteins, RGS7 and RGS9-2, regulate signaling by μ-opioid receptor (MOR) and dopamine D2 receptor (D2R) and are implicated in drug addiction, movement disorders, and nociception. Both proteins form trimeric complexes with the atypical G protein β subunit Gβ5 and a membrane anchor, R7BP. In this study, we examined GTPase-accelerating protein (GAP) activity as well as Gα and GPCR selectivity of RGS7 and RGS9-2 complexes in live cells using a bioluminescence resonance energy transfer-based assay that monitors dissociation of G protein subunits. We showed that RGS9-2/Gβ5 regulated both Gi and Go with a bias toward Go, but RGS7/Gβ5 could serve as a GAP only for Go. Interestingly, R7BP enhanced GAP activity of RGS7 and RGS9-2 toward Go and Gi and enabled RGS7 to regulate Gi signaling. Neither RGS7 nor RGS9-2 had any activity toward Gz, Gs, or Gq in the absence or presence of R7BP. We also observed no effect of GPCRs (MOR and D2R) on the G protein bias of R7 RGS proteins. However, the GAP activity of RGS9-2 showed a strong receptor preference for D2R over MOR. Finally, RGS7 displayed an four times greater GAP activity relative to RGS9-2. These findings illustrate the principles involved in establishing G protein and GPCR selectivity of striatal RGS proteins.  相似文献   

2.
Regulator of G protein signaling 11 (RGS11) is the least characterized member of the R7 family of Gγ-like GGL domain-containing RGS proteins. All R7-RGS proteins of a variety of cell types are found in Gβ5-containing complexes that exhibit a number of unique functional properties. However, presence of Gβ5 reduced the affinity of R7-RGS7 for Gα subunits, also only RGS7 bound to Muscarinic M3-Receptor, but the Gβ5-RGS7 dimer did not, making it difficult to study differential interaction of R7-RGS proteins. Here, we report the successful purification of functionally intact, Gβ5-free recombinant RGS11 (rRGS11), obtained by expressing N- and C-terminally truncated form of RGS11 in Escherichia coli BL 21 (DE3), that differentially interact with R7BP and Gαoa. rRGS11 was capable of interacting with Gαoa and R7BP (RGS7 family binding protein) with equilibrium dissociation constants (KD) of 904 (±208) nM, and 308 (±97) nM, respectively. It also induced several-fold increase in the GTPase activity of Gαoa. The binding of rRGS11 was differential with a binding preference for R7BP over Gαoa implying extended roles of R7BP. In addition, we identified a novel interaction between Gαoa and R7BP with a KD of 592 (±150) nM. The production of stable and functional rRGS11 would provide chances to discover more functions of RGS11 yet to be identified.  相似文献   

3.
R7BP (RGS7 family-binding protein) has been proposed to function in neurons as a palmitoylation-regulated protein that shuttles heterodimeric, G(i/o)α-specific GTPase-activating protein (GAP) complexes composed of Gβ5 and RGS7 (R7) isoforms between the plasma membrane and nucleus. To test this hypothesis we studied R7BP palmitoylation and localization in neuronal cells. We report that R7BP undergoes dynamic, signal-regulated palmitate turnover; the palmitoyltransferase DHHC2 mediates de novo and turnover palmitoylation of R7BP; DHHC2 silencing redistributes R7BP from the plasma membrane to the nucleus; and G(i/o) signaling inhibits R7BP depalmitoylation whereas G(i/o) inactivation induces nuclear accumulation of R7BP. In concert with previous evidence, our findings suggest that agonist-induced changes in palmitoylation state facilitate GAP action by (i) promoting Giα depalmitoylation to create optimal GAP substrates, and (ii) inhibiting R7BP depalmitoylation to stabilize membrane association of R7-Gβ5 GAP complexes. Regulated palmitate turnover may also enable R7BP-bound GAPs to shuttle between sites of low and high G(i/o) activity or the plasma membrane and nucleus, potentially providing spatio-temporal control of signaling by G(i/o)-coupled receptors.  相似文献   

4.
The RGS7 (R7) family of RGS proteins bound to the divergent Gbeta subunit Gbeta5 is a crucial regulator of G protein-coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7-Gbeta5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gbeta5, and R7 isoforms in brain is highly coincident. R7BP is palmitoylated near its COOH terminus, which targets the protein to the plasma membrane. Depalmitoylation of R7BP translocates R7BP-R7-Gbeta5 complexes from the plasma membrane to the nucleus. Compared with nonpalmitoylated R7BP, palmitoylated R7BP greatly augments the ability of RGS7 to attenuate GPCR-mediated G protein-regulated inward rectifying potassium channel activation. Thus, by controlling plasma membrane nuclear-shuttling of R7BP-R7-Gbeta5 complexes, reversible palmitoylation of R7BP provides a novel mechanism that regulates GPCR signaling and potentially transduces signals directly from the plasma membrane to the nucleus.  相似文献   

5.
Protease-activated receptor 1 (PAR1) is a G-protein coupled receptor (GPCR) that is activated by natural proteases to regulate many physiological actions. We previously reported that PAR1 couples to Gi, Gq and G12 to activate linked signaling pathways. Regulators of G protein signaling (RGS) proteins serve as GTPase activating proteins to inhibit GPCR/G protein signaling. Some RGS proteins interact directly with certain GPCRs to modulate their signals, though cellular mechanisms dictating selective RGS/GPCR coupling are poorly understood. Here, using bioluminescence resonance energy transfer (BRET), we tested whether RGS2 and RGS4 bind to PAR1 in live COS-7 cells to regulate PAR1/Gα-mediated signaling. We report that PAR1 selectively interacts with either RGS2 or RGS4 in a G protein-dependent manner. Very little BRET activity is observed between PAR1-Venus (PAR1-Ven) and either RGS2-Luciferase (RGS2-Luc) or RGS4-Luc in the absence of Gα. However, in the presence of specific Gα subunits, BRET activity was markedly enhanced between PAR1-RGS2 by Gαq/11, and PAR1-RGS4 by Gαo, but not by other Gα subunits. Gαq/11-YFP/RGS2-Luc BRET activity is promoted by PAR1 and is markedly enhanced by agonist (TFLLR) stimulation. However, PAR1-Ven/RGS-Luc BRET activity was blocked by a PAR1 mutant (R205A) that eliminates PAR1-Gq/11 coupling. The purified intracellular third loop of PAR1 binds directly to purified His-RGS2 or His-RGS4. In cells, RGS2 and RGS4 inhibited PAR1/Gα-mediated calcium and MAPK/ERK signaling, respectively, but not RhoA signaling. Our findings indicate that RGS2 and RGS4 interact directly with PAR1 in Gα-dependent manner to modulate PAR1/Gα-mediated signaling, and highlight a cellular mechanism for selective GPCR/G protein/RGS coupling.  相似文献   

6.
Tian N  Copenhagen DR 《Neuron》2003,39(1):85-96
ON and OFF pathways separately relay increment and decrement luminance signals from retinal bipolar cells to cortex. ON-OFF retinal ganglion cells (RGCs) are activated via synaptic inputs onto bistratified dendrites localized in the ON and OFF regions of the inner plexiform layer. Postnatal maturational processes convert bistratifying ON-OFF RGCs to monostratifying ON and OFF RGCs. Although visual deprivation influences refinement of higher visual centers, no previous studies suggest that light regulates either the development of the visual-evoked signaling in retinal ON and OFF pathways, nor pruning of bistratified RGC dendrites. We find that dark rearing blocks both the maturational loss of ON-OFF responsive RGCs and the pruning of dendrites. Thus, in retina, there is a previously unrecognized, pathway-specific maturation that is profoundly affected by visual deprivation.  相似文献   

7.
The extent and temporal characteristics of G protein-coupled receptor (GPCR) signaling are shaped by the regulator of G protein signaling (RGS) proteins, which promote G protein deactivation. With hundreds of GPCRs and dozens of RGS proteins, compartmentalization plays a key role in establishing signaling specificity. However, the molecular details and mechanisms of this process are poorly understood. In this paper, we report that the R7 group of RGS regulators is controlled by interaction with two previously uncharacterized orphan GPCRs: GPR158 and GPR179. We show that GPR158/179 recruited RGS complexes to the plasma membrane and augmented their ability to regulate GPCR signaling. The loss of GPR179 in a mouse model of night blindness prevented targeting of RGS to the postsynaptic compartment of bipolar neurons in the retina, illuminating the role of GPR179 in night vision. We propose that the interaction of RGS proteins with orphan GPCRs promotes signaling selectivity in G protein pathways.  相似文献   

8.
9.
Atypical antipsychotic drugs, such as clozapine and risperidone, have a high affinity for the serotonin 5-HT(2A) G protein-coupled receptor (GPCR), the 2AR, which signals via a G(q) heterotrimeric G protein. The closely related non-antipsychotic drugs, such as ritanserin and methysergide, also block 2AR function, but they lack comparable neuropsychological effects. Why some but not all 2AR inhibitors exhibit antipsychotic properties remains unresolved. We now show that a heteromeric complex between the?2AR and the G(i)-linked GPCR, metabotropic glutamate 2 receptor (mGluR2), integrates ligand input,?modulating signaling output and behavioral changes. Serotonergic and glutamatergic drugs bind the mGluR2/2AR heterocomplex, which then balances Gi- and Gq-dependent signaling. We find that the mGluR2/2AR-mediated changes in Gi and Gq activity predict the psychoactive behavioral effects of a variety of pharmocological compounds. These observations provide mechanistic insight into antipsychotic action that may advance therapeutic strategies for disorders including schizophrenia and dementia.  相似文献   

10.
The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance - Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina.  相似文献   

11.
The R7 family of RGS proteins (RGS6, -7, -9, -11) is characterized by the presence of three domains: DEP, GGL, and RGS. The RGS domain interacts with Galpha subunits and exhibits GAP activity. The GGL domain permanently associates with Gbeta5. The DEP domain interacts with the membrane anchoring protein, R7BP. Here we provide evidence for a novel interaction within this complex: between the DEP domain and Gbeta5. GST fusion of the RGS7 DEP domain (GST-R7DEP) binds to both native and recombinant Gbeta5-RGS7, recombinant Gbetagamma complexes, and monomeric Gbeta5 and Gbeta1 subunits. Co-immunoprecipitation and FRET assays supported the GST pull-down experiments. GST-R7DEP reduced FRET between CFP-Gbeta5 and YFP-RGS7, indicating that the DEP-Gbeta5 interaction is dynamic. In transfected cells, R7BP had no effect on the Gbeta5/RGS7 pull down by GST-R7DEP. The DEP domain of RGS9 did not bind to Gbeta5. Substitution of RGS7 Glu-73 and Asp-74 for the corresponding Ser and Gly residues (ED/SG mutation) of RGS9 diminished the DEP-Gbeta5 interaction. In the absence of R7BP both the wild-type RGS7 and the ED/SG mutant attenuated muscarinic M3 receptor-mediated Ca2+ mobilization. In the presence of R7BP, wild-type RGS7 lost this inhibitory activity, whereas the ED/SG mutant remained active. Taken together, our results are consistent with the following model. The Gbeta5-RGS7 molecule can exist in two conformations: "closed" and "open", when the DEP domain and Gbeta5 subunit either do or do not interact. The closed conformation appears to be less active with respect to its effect on Gq-mediated signaling than the open conformation.  相似文献   

12.
The extent of a neuron's dendritic field defines the region within which information is processed. The dendritic fields of functionally distinct ON and OFF center retinal ganglion cells (RGCs) form separate mosaics across the retina. Within each mosaic, neighboring dendritic fields overlap by a constant amount, sampling the visual field with the appropriate coverage. Contact-mediated lateral inhibition between neighboring RGCs has long been thought to regulate both the extent and overlap of dendritic fields during development. Here we show that dendro-dendritic contact exists between developing RGCs and occurs in a manner that would regulate the formation of ON and OFF mosaics separately. Dye-filled neighboring ON and OFF ferret alpha RGCs were reconstructed using multiphoton microscopy. At all neonatal ages examined, we observed dendro-dendritic contacts between RGCs of the same sign (ON/ON; OFF/OFF), but never between cells of opposite signs (ON/OFF). Terminal dendrites of one cell often touched a dendrite of its neighbor as they intersected. In some instances, the distal dendrite of one cell formed a fascicle with the proximal process of its neighbor. Alpha cells did not form contacts with neighboring beta cells of the same sign. Together, these observations suggest that dendro-dendritic contact between RGCs is cell-type specific. Dendritic contacts were observed even before the alpha cell arbors were completely stratified, suggesting that cell-cell recognition may take place early in their development. For each cell type, the relative overlap of dendritic fields was constant with age, despite a two-fold increase in field area. We suggest that dendro-dendritic contacts may be sites of intercellular signaling that could regulate local extension of dendrites to maintain the relative overlap of RGCs within a mosaic during development.  相似文献   

13.
Pleiotropic G proteins are essential for the action of hormones and neurotransmitters and are activated by stimulation of G protein-coupled receptors (GPCR), which initiates heterotrimer dissociation of the G protein, exchange of GDP for GTP on its Galpha subunit and activation of effector proteins. Regulator of G protein signaling (RGS) proteins regulate this cascade and can be recruited to the membrane upon GPCR activation. Direct functional interaction between RGS and GPCR has been hypothesized. We show that recruitment of GAIP (RGS19) by the dopamine D2 receptor (D2R), a GPCR, required the scaffold protein GIPC (GAIP-interacting protein, C terminus) and that all three were coexpressed in neurons and neuroendocrine cells. Dynamic translocation of GAIP to the plasma membrane and coassembly in a protein complex in which GIPC was a required component was dictated by D2R activation and physical interactions. In addition, two different D2R-mediated responses were regulated by the GTPase activity of GAIP at the level of the G protein coupling in a GIPC-dependent manner. Since GIPC exclusively interacted with GAIP and selectively with subsets of GPCR, this mechanism may serve to sort GPCR signaling in cells that usually express a large repertoire of GPCRs, G proteins, and RGS.  相似文献   

14.
DREADDs, designer receptors exclusively activated by designer drugs, are engineered G protein‐coupled receptors (GPCR) which can precisely control GPCR signaling pathways (for example, Gq, Gs, and Gi). This chemogenetic technology for control of GPCR signaling has been successfully applied in a variety of in vivo studies, including in mice, to remotely control GPCR signaling, for example, in neurons, glia cells, pancreatic β‐cells, or cancer cells. In order to fully explore the in vivo applications of the DREADD technology, we generated hM3Dq and hM4Di strains of mice which allow for Cre recombinase‐mediated restricted expression of these pathway‐selective DREADDs. With the many Cre driver lines now available, these DREADD lines will be applicable to studying a wide array of research and preclinical questions. genesis 54:439–446, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Together with G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins, RGS proteins are the major family of molecules that control the signaling of GPCRs. The expression pattern of one of these RGS family members, RGS9-2, coincides with that of the dopamine D(3) receptor (D(3)R) in the brain, and in vivo studies have shown that RGS9-2 regulates the signaling of D2-like receptors. In this study, β-arrestin2 was found to be required for scaffolding of the intricate interactions among the dishevelled-EGL10-pleckstrin (DEP) domain of RGS9-2, Gβ5, R7-binding protein (R7BP), and D(3)R. The DEP domain of RGS9-2, under the permission of β-arrestin2, inhibited the signaling of D(3)R in collaboration with Gβ5. β-Arrestin2 competed with R7BP and Gβ5 so that RGS9-2 is placed in the cytosolic region in an open conformation which is able to inhibit the signaling of GPCRs. The affinity of the receptor protein for β-arrestin2 was a critical factor that determined the selectivity of RGS9-2 for the receptor it regulates. These results show that β-arrestins function not only as mediators of receptor-G protein uncoupling and initiators of receptor endocytosis but also as scaffolding proteins that control and coordinate the inhibitory effects of RGS proteins on the signaling of certain GPCRs.  相似文献   

16.
The development of optic stalk neuroepithelial cells depends on Hedgehog (Hh) signaling, yet the source(s) of Hh protein in the optic stalk is unknown. We provide genetic evidence that sonic hedgehog (Shh) from retinal ganglion cells (RGCs) promotes the development of optic disc and stalk neuroepithelial cells. We demonstrate that RGCs express Shh soon after differentiation, and cells at the optic disc in close proximity to the Shh-expressing RGCs upregulate Hh target genes, which suggests they are responding to RGC-derived Shh signaling. Conditional ablation of Shh in RGCs caused a complete loss of optic disc astrocyte precursor cells, resulting in defective axon guidance in the retina, as well as conversion of the neuroepithelial cells in the optic stalk to pigmented cells. We further show that Shh signaling modulates the size of the Pax2(+) astrocyte precursor cell population at the optic disc in vitro. Together, these data provide a novel insight into the source of Hh that promotes neuroepithelial cell development in the mammalian optic disc and stalk.  相似文献   

17.
Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs) in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.  相似文献   

18.
Zhang L  Salom D  He J  Okun A  Ballesteros J  Palczewski K  Li N 《Biochemistry》2005,44(44):14509-14518
G protein-coupled receptors (GPCRs) constitute the largest superfamily of transmembrane signaling proteins; however, the only known GPCR crystal structure is that of rhodopsin. This disparity reflects the difficulty in generating purified GPCR samples of sufficient quantity and quality. Rhodopsin, the light receptor of retinal rod neurons, is produced in large amounts of homogeneous quality in the vertebrate retina. We used transgenic Xenopus laevis to convert these retina rod cells into bioreactors to successfully produce 20 model GPCRs. The receptors accumulated in rod outer segments and were homogeneously glycosylated. Ligand and [(35)S]GTPgammaS binding assays of the 5HT(1A) and EDG(1) GPCRs confirmed that they were properly folded and functional. 5HT(1A)R was highly purified by taking advantage of the rhodopsin C-terminal immunoaffinity tag common to all GPCR constructs. We have also developed an automated system that can generate hundreds of transgenic tadpoles per day. This expression approach could be extended to other animal model systems and become a general method for the production of large numbers of GPCRs and other membrane proteins for pharmacological and structural studies.  相似文献   

19.
A member of the RGS (regulators of G protein signaling) family, RGS9-2 is a critical regulator of G protein signaling pathways that control locomotion and reward signaling in the brain. RGS9-2 is specifically expressed in striatal neurons where it forms complexes with its newly discovered partner, R7BP (R7 family binding protein). Interaction with R7BP is important for the subcellular targeting of RGS9-2, which in native neurons is found in plasma membrane and its specializations, postsynaptic densities. Here we report that R7BP plays an additional important role in determining proteolytic stability of RGS9-2. We have found that co-expression with R7BP dramatically elevates the levels of RGS9-2 and its constitutive subunit, Gbeta5. Measurement of the RGS9-2 degradation kinetics in cells indicates that R7BP markedly reduces the rate of RGS9-2.Gbeta5 proteolysis. Lentivirus-mediated RNA interference knockdown of the R7BP expression in native striatal neurons results in the corresponding decrease in RGS9-2 protein levels. Analysis of the molecular determinants that mediate R7BP/RGS9-2 binding to result in proteolytic protection have identified that the binding site for R7BP in RGS proteins is formed by pairing of the DEP (Disheveled, EGL-10, Pleckstrin) domain with the R7H (R7 homology), a domain of previously unknown function that interacts with four putative alpha-helices of the R7BP core. These findings provide a mechanism for the regulation of the RGS9 protein stability in the striatal neurons.  相似文献   

20.
The mouse visual system is immature when the eyes open two weeks after birth. As in other mammals, some of the maturation that occurs in the subsequent weeks is known to depend on visual experience. Development of the retina, which as the first stage of vision provides the visual information to the brain, also depends on light‐driven activity for proper development but has been less well studied than visual cortical development. The critical properties for retinal encoding of images include detection of contrast and responsiveness to the broad range of temporal stimulus frequencies present in natural stimuli. Here we show that contrast detection threshold and temporal frequency response characteristics of ON and OFF retinal ganglion cells (RGCs), which are poor at eye opening, subsequently undergo maturation, improving RGC performance. Further, we find that depriving mice of visual experience from before birth by rearing them in the dark causes ON and OFF RGCs to have smaller receptive field centers but does not affect their contrast detection threshold development. The modest developmental increase in temporal frequency responsiveness of RGCs in mice reared on a normal light cycle was inhibited by dark rearing only in ON but not OFF RGCs. Thus, these RGC response characteristics are in many ways unaffected by the experience‐dependent changes to synaptic and spontaneous activity known to occur in the mouse retina in the two weeks after eye opening, but specific differences are apparent in the ON vs. OFF RGC populations. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 692–706, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号