首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli RNA polymerase (RNAP) is the most studied bacterial RNAP and has been used as the model RNAP for screening and evaluating potential RNAP-targeting antibiotics. However, the x-ray crystal structure of E. coli RNAP has been limited to individual domains. Here, I report the x-ray structure of the E. coli RNAP σ70 holoenzyme, which shows σ region 1.1 (σ1.1) and the α subunit C-terminal domain for the first time in the context of an intact RNAP. σ1.1 is positioned at the RNAP DNA-binding channel and completely blocks DNA entry to the RNAP active site. The structure reveals that σ1.1 contains a basic patch on its surface, which may play an important role in DNA interaction to facilitate open promoter complex formation. The α subunit C-terminal domain is positioned next to σ domain 4 with a fully stretched linker between the N- and C-terminal domains. E. coli RNAP crystals can be prepared from a convenient overexpression system, allowing further structural studies of bacterial RNAP mutants, including functionally deficient and antibiotic-resistant RNAPs.  相似文献   

2.
3.
4.
5.
6.
7.
σ factors endow RNA polymerase with promoter specificity in bacteria. Extra-Cytoplasmic Function (ECF) σ factors represent the largest and most diverse family of σ factors. Most ECF σ factors must be activated in response to an external signal. One mechanism of activation is the stepwise proteolytic destruction of an anti-σ factor via Regulated Intramembrane Proteolysis (RIP). In most cases, the site-1 protease required to initiate the RIP process directly senses the signal. Here we report a new mechanism in which the anti-σ factor rather than the site-1 protease is the sensor. We provide evidence suggesting that the anti-σ factor RsiV is the bacterial receptor for the innate immune defense enzyme, lysozyme. The site-1 cleavage site is similar to the recognition site of signal peptidase and cleavage at this site is required for σV activation in Bacillus subtilis. We reconstitute site-1 cleavage in vitro and demonstrate that it requires both signal peptidase and lysozyme. We demonstrate that the anti-σ factor RsiV directly binds to lysozyme and muramidase activity is not required for σV activation. We propose a model in which the binding of lysozyme to RsiV activates RsiV for signal peptidase cleavage at site-1, initiating proteolytic destruction of RsiV and activation of σV. This suggests a novel mechanism in which conformational change in a substrate controls the cleavage susceptibility for signal peptidase. Thus, unlike other ECF σ factors which require regulated intramembrane proteolysis for activation, the sensor for σV activation is not the site-1 protease but the anti-σ factor.  相似文献   

8.
9.
During growth in the environment, bacteria encounter stresses which can delay or inhibit their growth. To defend against these stresses, bacteria induce both resistance and repair mechanisms. Many bacteria regulate these resistance mechanisms using a group of alternative σ factors called extracytoplasmic function (ECF) σ factors. ECF σ factors represent the largest and most diverse family of σ factors. Here, we demonstrate that the activation of a member of the ECF30 subfamily of ECF σ factors, σV in Bacillus subtilis, is controlled by the proteolytic destruction of the anti-σ factor RsiV. We will demonstrate that the degradation of RsiV and, thus, the activation of σV requires multiple proteolytic steps. Upon exposure to the inducer lysozyme, the extracellular domain of RsiV is removed by an unknown protease, which cleaves at site 1. This cleavage is independent of PrsW, the B. subtilis site 1 protease, which cleaves the anti-σ factor RsiW. Following cleavage by the unknown protease, the N-terminal portion of RsiV requires further processing, which requires the site 2 intramembrane protease RasP. Our data indicate that the N-terminal portion of RsiV from amino acid 1 to 60, which lacks the extracellular domain, is constitutively degraded unless RasP is absent, indicating that RasP cleavage is constitutive. This suggests that the regulatory step in RsiV degradation and, thus, σV activation are controlled at the level of the site 1 cleavage. Finally, we provide evidence that increased resistance to lysozyme decreases σV activation. Collectively, these data provide evidence that the mechanism for σV activation in B. subtilis is controlled by regulated intramembrane proteolysis (RIP) and requires the site 2 protease RasP.  相似文献   

10.
11.
The study of protein-protein interactions is becoming increasingly important for understanding the regulation of many cellular processes. The ability to quantify the strength with which two binding partners interact is desirable but the accurate determination of equilibrium binding constants is a difficult process. The use of Luminescence Resonance Energy Transfer (LRET) provides a homogeneous binding assay that can be used for the detection of protein-protein interactions. Previously, we developed an LRET assay to screen for small molecule inhibitors of the interaction of σ70 with theβ'' coiled-coil fragment (amino acids 100–309). Here we describe an LRET binding assay used to monitor the interaction of E. coli σ70 and σ32 with core RNA polymerase along with the controls to verify the system. This approach generates fluorescently labeled proteins through the random labeling of lysine residues which enables the use of the LRET assay for proteins for which the creation of single cysteine mutants is not feasible. With the LRET binding assay, we are able to show that the interaction of σ70 with core RNAP is much more sensitive to NaCl than to potassium glutamate (KGlu), whereas the σ32 interaction with core RNAP is insensitive to both salts even at concentrations >500 mM. We also find that the interaction of σ32 with core RNAP is stronger than σ70 with core RNAP, under all conditions tested. This work establishes a consistent set of conditions for the comparison of the binding affinities of the E.coli sigma factors with core RNA polymerase. The examination of the importance of salt conditions in the binding of these proteins could have implications in both in vitro assay conditions and in vivo function.  相似文献   

12.
13.
14.
15.
Here we report that in Streptomyces coelicolor, the protein stability of an ECF σ factor SigT, which is involved in the negative regulation of cell differentiation, was completely dependent on its cognate anti-σ factor RstA. The degradation of RstA caused a ClpP/SsrA-dependent degradation of SigT during cell differentiation. This was consistent with the delayed morphological development or secondary metabolism in the ΔclpP background after rstA deletion or sigT overexpression. Meanwhile, SigT negatively regulated clpP/ssrA expression by directly binding to the clpP promoter (clpPp). The SigT-clpPp interaction could be disrupted by secondary metabolites, giving rise to the stabilized SigT protein and retarded morphological development in a non-antibiotic-producing mutant. Thus a novel regulatory mechanism was revealed that the protein degradation of the ECF σ factor was initiated by the degradation of its anti-σ factor, and was accelerated in a dual positive feedback manner, through regulation by secondary metabolites, to promote rapid and irreversible development of the secondary metabolism. This ingenious cooperation of intracellular components can ensure economical and exquisite control of the ECF σ factor protein level for the proper cell differentiation in Streptomyces.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号