共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Else Marie Fykse 《Journal of neurochemistry》1998,71(4):1661-1669
Abstract: Studies performed over the past several years have provided evidence that phosphorylation of proteins is important in the regulation of neurotransmitter release. In this study, it is shown that rabphilin-3A is present in cerebellar granule cells as a phosphoprotein, by using 32 P-labeling of cerebellar granule cells, immunoprecipitation, phosphoamino acid analysis, and phosphopeptide mapping. The level of phosphorylation was increased (224 ± 13%) (mean ± SEM) on depolarization of the cells with K+ (56 m M ) in the presence of external Ca2+ (1 m M ). Stimulation of protein kinase C with a phorbol ester (phorbol 12,13-dibutyrate) also enhanced the phosphorylation of rabphilin-3A (217 ± 21%). Inhibitors of Ca2+ /calmodulin-stimulated protein kinases or protein kinase C reduced the depolarization-enhanced phosphorylation of rabphilin-3A, indicating that rabphilin-3A is one of the targets for Ca2+ -activated protein kinases in the nerve terminal. Costimulation of cells with phorbol 12,13-dibutyrate and K+ depolarization produced an increased level of phosphorylation of rabphilin-3A compared with either stimulus alone (287 ± 61%). Phosphoamino acid analysis showed that serine was the main phosphorylated residue. A slight increase in the threonine phosphorylation could also be detected, whereas tyrosine phosphorylation could not be detected at all. These results suggest that rabphilin-3A is phosphorylated in vivo and undergoes synaptic activity-dependent phosphorylation during Ca2+ -activated K+ depolarization. 相似文献
3.
Previous studies have reported that perinatal nicotine exposure causes development of hypertensive phenotype in adult offspring.
Aims
The present study was to determine whether perinatal nicotine exposure causes an epigenetic programming of vascular Angiotensin II receptors (ATRs) and their-mediated signaling pathway leading to heightened vascular contraction in adult offspring.Main methods
Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. The experiments were conducted at 5 months of age of male offspring.Key Findings
Nicotine treatment enhanced Angitension II (Ang II)-induced vasoconstriction and 20-kDa myosin light chain phosphorylation (MLC20-P) levels. In addition, the ratio of Ang II-induced tension/MLC-P was also significantly increased in nicotine-treated group compared with the saline group. Nicotine-mediated enhanced constrictions were not directly dependent on the changes of [Ca2+]i concentrations but dependent on Ca2+ sensitivity. Perinatal nicotine treatment significantly enhanced vascular ATR type 1a (AT1aR) but not AT1bR mRNA levels in adult rat offspring, which was associated with selective decreases in DNA methylation at AT1aR promoter. Contrast to the effect on AT1aR, nicotine decreased the mRNA levels of vascular AT2R gene, which was associated with selective increases in DNA methylation at AT2R promoter.Significance
Our results indicated that perinatal nicotine exposure caused an epigenetic programming of vascular ATRs and their-mediated signaling pathways, and suggested that differential regulation of AT1R/AT2R gene expression through DNA methylation mechanism may be involved in nicotine-induced heightened vasoconstriction and development of hypertensive phenotype in adulthood. 相似文献4.
Human studies demonstrate a four-fold increased possibility of smoking in the children of mothers who smoked during pregnancy. Nicotine is the active addictive component in tobacco-related products, crossing the placenta and contaminating the amniotic fluid. It is known that chemosensory experience in the womb can influence postnatal odor-guided preference behaviors for an exposure stimulus. By means of behavioral and neurophysiologic approaches, we examined whether fetal nicotine exposure, using mini-osmotic pumps, altered the response to nicotine odor in early postnatal (P17), adolescent (P35) and adult (P90) progeny. Compared with controls, fetal exposed rats displayed an altered innate response to nicotine odor that was evident at P17, declined in magnitude by P35 and was absent at P90 - these effects were specific to nicotine odor. The behavioral effect in P17 rats occurred in conjunction with a tuned olfactory mucosal response to nicotine odor along with an untoward consequence on the epithelial response to other stimuli – these P17 neural effects were absent in P35 and P90 animals. The absence of an altered neural effect at P35 suggests that central mechanisms, such as nicotine-induced modifications of the olfactory bulb, bring about the altered behavioral response to nicotine odor. Together, these findings provide insights into how fetal nicotine exposure influences the behavioral preference and responsiveness to the drug later in life. Moreover, they add to a growing literature demonstrating chemosensory mechanisms by which patterns of maternal drug use can be conveyed to offspring, thereby enhancing postnatal vulnerability for subsequent use and abuse. 相似文献
5.
Shunichi Matsuda Hideyuki Matsumoto Toshiaki Furubayashi Ritsuko Hanajima Shoji Tsuji Yoshikazu Ugawa Yasuo Terao 《PloS one》2015,10(2)
The ‘3-second rule’ has been proposed based on miscellaneous observations that a time period of around 3 seconds constitutes the fundamental unit of time related to the neuro-cognitive machinery in normal humans. The aim of paper was to investigate the temporal processing in patients with spinocerebellar ataxia type 6 (SCA6) and SCA31, pure cerebellar types of spinocerebellar degeneration, using a synchronized tapping task. Seventeen SCA patients (11 SCA6, 6 SCA31) and 17 normal age-matched volunteers participated. The task required subjects to tap a keyboard in synchrony with sequences of auditory stimuli presented at fixed interstimulus intervals (ISIs) between 200 and 4800 ms. In this task, the subjects required non-motor components to estimate the time of forthcoming tone in addition to motor components to tap. Normal subjects synchronized their taps to the presented tones at shorter ISIs, whereas as the ISI became longer, the normal subjects displayed greater latency between the tone and the tapping (transition zone). After the transition zone, normal subjects pressed the button delayed relative to the tone. On the other hand, SCA patients could not synchronize their tapping with the tone even at shorter ISIs, although they pressed the button delayed relative to the tone earlier than normal subjects did. The earliest time of delayed tapping appearance after the transition zone was 4800 ms in normal subjects but 1800 ms in SCA patients. The span of temporal integration in SCA patients is shortened compared to that in normal subjects. This could represent non-motor cerebellar dysfunction in SCA patients. 相似文献
6.
Abstract: The functional expression of the kainate subtype of glutamate receptor (GluR) has been investigated in cultured rat cerebellar granule cells using single cell intracellular calcium ([Ca2+ ]i ) measurements. Both AMPA- and kainate-induced [Ca2+ ]i increases could be blocked completely by the AMPA receptor-selective antagonist LY300168 (50 µ M ). However, following treatment with concanavalin A, an inhibitor of kainate receptor desensitisation, 30% of cells showed a kainate-induced [Ca2+ ]i rise of >100 n M in the presence of LY300168. Responses to 30 µ M kainate in the presence of LY300168 were virtually abolished by the AMPA and GluR5 kainate receptor competitive antagonist LY293558 (100 µ M ). These results demonstrate the presence of functional kainate receptors on cultured cerebellar granule cells, and suggest that the GluR5 subtype of kainate receptor plays a significant role in kainate receptor-mediated [Ca2+ ]i increases. 相似文献
7.
ObjectiveIt has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.MethodsEighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35–60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.ResultsFor the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1).ConclusionAbdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury. 相似文献
8.
Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol''s bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine''s odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams'' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our results suggest broader implications related to the consequence of fetal exposure with one substance of abuse and initial acceptability of others. 相似文献
9.
Protein Kinase C Activation Attenuates N-Methyl-d-Aspartate-Induced Increases in Intracellular Calcium in Cerebellar Granule Cells 总被引:1,自引:0,他引:1
Lawrence D. Snell Karen R. lorio Boris Tabakoff Paula L. Hoffman 《Journal of neurochemistry》1994,62(5):1783-1789
Abstract: Activation of the N-methyl-d -aspartate (NMDA) subtype of glutamate receptor increases levels of intracellular calcium and can lead to stimulation of protein kinase C activity. Several reports have demonstrated that stimulation of protein kinase C can, in turn, increase electrophysiological responses to NMDA in certain cells or in oocytes expressing certain NMDA receptor subunits. In the present study, the effects of protein kinase C activation on NMDA receptor-mediated increases in intracellular Ca2+ levels were investigated in primary cultures of rat cerebellar granule cells using fura-2 fluorescence spectroscopy. Pretreatment of the cells with the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), but not the inactive analogue 4α-phorbol 12-myristate 13-acetate, inhibited NMDA-induced increases in intracellular Ca2+ levels. Coincubation of cells with PMA and the kinase inhibitor staurosporine or calphostin C blocked the PMA effect. The potency of NMDA was reduced twofold, and the potency of the NMDA receptor coagonist, glycine, to enhance the response to NMDA was decreased fourfold by pretreatment of cells with PMA. The effect on glycine was mimicked by pretreatment with okadaic acid, a protein phosphatase inhibitor. PMA treatment did not significantly alter Mg2+ inhibition of the NMDA response but decreased the potency of the competitive antagonist CGS-19755. These data suggest that, in cerebellar granule cells, the function of the NMDA receptor may be subject to feedback inhibition by protein kinase C stimulation. Under physiological conditions, this inhibition may result from a decreased effectiveness of the endogenous coagonists, glutamate and glycine. 相似文献
10.
Mauro Sparapani Marco Virgili Giuseppe Bardi Manuela Tregnago Barbara Monti Monia Bentivogli Antonio Contestabile 《Journal of neurochemistry》1998,71(5):1898-1904
Abstract: Ornithine decarboxylase (ODC), the key enzyme for polyamine biosynthesis, dramatically decreases in activity during normal cerebellar development, in parallel with the progressive differentiation of granule neurons. We have studied whether a similar pattern is displayed by cerebellar granule neurons during survival and differentiation in culture. We report that when granule cells were kept in vitro under trophic conditions (high K+ concentration), ODC activity progressively decreased in parallel with neuronal differentiation. Under nontrophic conditions (cultures kept in low K+ concentration), the enzymatic activity dropped quickly in parallel with an increased apoptotic elimination of cells. Cultures kept in high K+ but chronically exposed to 10 m M lithium showed both an increased rate of apoptotic cell death at 2 and 4 days in vitro and a quicker drop of ODC activity and immunocytochemical staining. A short chronic treatment of rat pups with lithium also resulted in transient decrease of cerebellar ODC activity and increased programmed cell death, as revealed by in situ detection of apoptotic granule neurons. The present data indicate that a sustained ODC activity is associated with the phase of survival and differentiation of granule neurons and that, conversely, conditions that favor their apoptotic elimination are accompanied by a down-regulation of the enzymatic activity. 相似文献
11.
Michael J. Asmussen Mark F. Jacobs Kevin G. H. Lee Christopher M. Zapallow Aimee J. Nelson 《PloS one》2013,8(4)
When somatosensory input via electrical stimulation of a peripheral nerve precedes a transcranial magnetic stimulation (TMS) pulse over the primary motor cortex (M1) the corticospinal output is substantially reduced, a phenomenon known as short-latency afferent inhibition (SAI). The present study investigated SAI during rest and during pre-movement, phasic and tonic components of movement. Participants were required to perform an index finger flexion reaction time task in response to an auditory cue. In a series of experiments, SAI was evoked from the mixed, median nerve at the wrist or the cutaneous, digital nerve stimulation of the index finger. To assess the spinal versus cortical origin of movement-related modulation of SAI, F-wave amplitudes were measured during rest and the three movement components. Results indicated that SAI was reduced during all movement components compared to rest, an effect that occurred for both nerves stimulated. Pre-movement SAI reduction was primarily attributed to reduced cortical inhibition, while increased spinal excitability additionally contributed to reduced SAI during tonic and phasic components of movement. SAI was differentially modulated across movement components with mixed but not cutaneous nerve stimulation. These findings reveal that SAI is reduced during movement and this reduction begins as early as the preparation to move. Further, these data suggest that the degree of SAI reduction during movement may be specific to the volume and/or composition of afferent input carried by each nerve. 相似文献
12.
Ziegler DR Ribeiro LC Hagenn M Siqueira IR Araújo E Torres IL Gottfried C Netto CA Gonçalves CA 《Neurochemical research》2003,28(12):1793-1797
Ketogenic diets have been used in the treatment of refractory childhood epilepsy for almost 80 years; however, we know little about the underlying biochemical basis of their action. In this study, we evaluate oxidative stress in different brain regions from Wistar rats fed a ketogenic diet. Cerebral cortex appears to have not been affected by this diet, and cerebellum presented a decrease in antioxidant capacity measured by a luminol oxidation assay without changes in antioxidant enzyme activities—glutathione peroxidase, catalase, and superoxide dismutase. In the hippocampus, however, we observed an increase in antioxidant activity accompanied by an increase of glutathione peroxidase (about 4 times) and no changes in lipoperoxidation levels. We suggest that the higher activity of this enzyme induced by ketogenic diet in hippocampus might contribute to protect this structure from neurodegenerative sequelae of convulsive disorders. 相似文献
13.
H. Kato-Noguchi 《Biologia Plantarum》2000,43(4):621-624
Maize (Zea mays L.) seedlings were exposed to osmotic stress, and alcohol dehydrogenase (ADH) activity and abscisic acid (ABA) concentration were determined. The osmotic stress increased ADH activities in both roots and shoots, whereas the increase was 2-fold greater in roots than the shoots. The stress also increased ABA concentration in both roots and shoots and the increase was greater in the roots than in the shoots. 相似文献
14.
15.
Hoonsik Cho Do-Won Jeong Qian Liu Won-Sik Yeo Thomas Vogl Eric P. Skaar Walter J. Chazin Taeok Bae 《PLoS pathogens》2015,11(7)
Calprotectin, the most abundant cytoplasmic protein in neutrophils, suppresses the growth of Staphylococcus aureus by sequestering the nutrient metal ions Zn and Mn. Here we show that calprotectin can also enhance the activity of the SaeRS two component system (TCS), a signaling system essential for production of over 20 virulence factors in S. aureus. The activity of the SaeRS TCS is repressed by certain divalent ions found in blood or neutrophil granules; however, the Zn bound-form of calprotectin relieves this repression. During staphylococcal encounter with murine neutrophils or staphylococcal infection of the murine peritoneal cavity, calprotectin increases the activity of the SaeRS TCS as well as the production of proinflammatory cytokines such as IL-1β and TNF-α, resulting in higher murine mortality. These results suggest that, under certain conditions, calprotectin can be exploited by S. aureus to increase bacterial virulence and host mortality. 相似文献
16.
Xyloglucan Endotransglycosylase Activity Increases during Kiwifruit (Actinidia deliciosa) Ripening (Implications for Fruit Softening) 总被引:3,自引:5,他引:3
下载免费PDF全文

The activity of xyloglucan endotransglycosylase (XET) was as-sayed in three tissue zones of kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang et A.R. Ferguson var deliciosa cv Hayward) at harvest and at several softening stages following a postharvest ethylene treatment. At harvest, extractable XET activity per unit fresh weight in the inner pericarp (IP) and core tissue was 4.5 and 42 times higher, respectively, than in the outer pericarp (OP). Within 24 h of ethylene treatment there was an increase in the activity and specific activity of XET in all tissues that continued throughout softening. Activity increased most in the OP, where it showed a 12-fold rise 6 d after ethylene treatment compared with 4.5- and 2.5-fold increases in the IP and core tissues, respectively. Visible swelling of the cell wall in each tissue was observed 24 h after the first detectable rise in XET activity and was most pronounced in the OP, which showed the greatest percentage increase in XET activity. Xyloglucan, galactoglucomannan, and cell wall materials isolated and purified from kiwifruit OP were tested as donor substrates for kiwifruit XET. The enzyme showed activity against xyloglucan but was inactive against galactoglucomannan. XET was active against cell wall materials from unripe and ripe fruit, with swollen walls from the latter being the better substrate. The results indicate that XET may have a key role early in fruit ripening, loosening the cell wall in preparation for further modification by other cell wall-associated enzymes. 相似文献
17.
Maik Riedl Andreas Müller Jan F. Kraemer Thomas Penzel Juergen Kurths Niels Wessel 《PloS one》2014,9(4)
Cardiovascular diseases are the main source of morbidity and mortality in the United States with costs of more than $170 billion. Repetitive respiratory disorders during sleep are assumed to be a major cause of these diseases. Therefore, the understanding of the cardio-respiratory regulation during these events is of high public interest. One of the governing mechanisms is the mutual influence of the cardiac and respiratory oscillations on their respective onsets, the cardio-respiratory coordination (CRC). We analyze this mechanism based on nocturnal measurements of 27 males suffering from obstructive sleep apnea syndrome. Here we find, by using an advanced analysis technique, the coordigram, not only that the occurrence of CRC is significantly more frequent during respiratory sleep disturbances than in normal respiration (p-value<10−51) but also more frequent after these events (p-value<10−15). Especially, the latter finding contradicts the common assumption that spontaneous CRC can only be observed in epochs of relaxed conditions, while our newly discovered epochs of CRC after disturbances are characterized by high autonomic stress. Our findings on the connection between CRC and the appearance of sleep-disordered events require a substantial extension of the current understanding of obstructive sleep apneas and hypopneas. 相似文献
18.
Timo Saraj?rvi Annakaisa Haapasalo Jayashree Viswanathan Petra M?kinen Marjo Laitinen Hilkka Soininen Mikko Hiltunen 《The Journal of biological chemistry》2009,284(49):34433-34443
Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against β-amyloid (Aβ) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the β-secretase (BACE1) function and β-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that ∼60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Aβ secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized γ-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced β-amyloidogenic processing of APP and ultimately increased Aβ production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased β-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease pathogenesis. 相似文献
19.
Bambrick LL Chandrasekaran K Mehrabian Z Wright C Krueger BK Fiskum G 《Journal of bioenergetics and biomembranes》2006,38(1):43-47
Isolated brain mitochondria are a heterogeneous mixture from different cell types and these subsets may have differing sensitivities to Ca2+-induced membrane permeability transition (MPT) and to inhibition of the MPT by cyclosporin A (CsA). This study tested the hypothesis that mitochondria within primary cultures of astrocytes and neurons exhibit different energy-dependent Ca2+ uptake capacities and different degrees to which CsA increases their uptake capacity. Astrocytes and neurons were suspended in a cytosol-like medium containing respiratory substrates, ATP, and Mg2+ in the presence of digitonin to selectively permeabilize the plasma membrane. Uptake of added Ca2+ by mitochondria within the cells was measured by Calcium Green 5N fluorescent monitoring of the medium [Ca2+]. Permeabilized astrocytes had a fourfold higher Ca2+ uptake capacity, relative to neurons and a twofold higher content based on relative contents of mitochondria assessed by measurements of mitochondrial DNA and cytochrome oxidase subunit 1 protein. In astrocytes the Ca2+ uptake capacity was increased twofold by preincubation with 2–5 μM CsA, while in neurons CsA had no effect. Similar results were obtained using measurements of the effects of added Ca2+ on mitochondrial membrane potential. FK506, a drug similar to CsA but without MPT inhibitory activity, had no effect on either cell type. These results are consistent with the presence of a calcium-induced MPT in astrocytes, even in the presence of ATP, and indicate that the MPT in cerebellar granule neurons is resistant to CsA inhibition. Some of the protective effects of CsA in vivo may therefore be mediated by preservation of mitochondrial functional integrity within astrocytes. 相似文献
20.
Norepinephrine Increases Cyclic GMP Levels in Cerebellar Cells from Neuronal Nitric Oxide Synthase Knockout Mice 总被引:2,自引:0,他引:2
Abstract: Cyclic GMP is an important intracellular messenger in the nervous system that may mediate cellular forms of neuronal plasticity. Previous studies show that most neurotransmitters stimulate cyclic GMP levels by the activation of nitric oxide synthase (NOS). In this study, we report that in primary cell cultures from the cerebellum of neuronal NOS knockout mice, norepinephrine stimulates an increase in cyclic GMP content. This increase is seen in both granule cell and astrocyte cultures and is not blocked by inhibitors of NOS or by inhibition of soluble guanylyl cyclase. These results suggest a novel pathway by which norepinephrine enhances cyclic GMP levels in the nervous system. 相似文献