首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Tumor hypoxia induces epithelial-mesenchymal transition (EMT), which induces invasion and metastasis, and is linked to cancer stem cells (CSCs). Whether EMT generates CSCs de novo, enhances migration of existing CSCs or both is unclear. We examined patient tissue of pancreatic ductal adenocarcinoma (PDA) along with carcinomas of breast, lung, kidney, prostate and ovary. For in vitro studies, five established PDA cell lines classified as less (CSClow) and highly aggressive CSC-like cells (CSChigh) were examined by single and double immunofluorescence microscopy, wound-, transwell-, and time-lapse microscopy. HIF-1α and Slug, as well as HIF-2α and CD133 were co-expressed pointing to a putative co-existence of hypoxia, EMT and CSCs in vivo. CSChigh cells exhibited high basal expression of the mesenchymal Vimentin protein but low or absent expression of the epithelial marker E-cadherin, with the opposite result in CSClow cells. Hypoxia triggered altering of cell morphology from an epithelial to a mesenchymal phenotype, which was more pronounced in CSChigh cells. Concomitantly, E-cadherin expression was reduced and expression of Vimentin, Slug, Twist2 and Zeb1 enhanced. While hypoxia caused migration in all cell lines, velocity along with the percentage of migrating, polarized and pseudopodia-forming cells was significantly higher in CSChigh cells. These data indicate that hypoxia-induced EMT occurs in PDA and several other tumor entities. However although hypoxia-induced EMT signaling occurs in all tumor cell populations, only the stem-like cells acquire high migratory potential and thus may be responsible for invasion and metastasis.  相似文献   

4.
5.
Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. Although the exact mechanisms driving hypoxia-induced invasion and metastasis remain elusive, we hypothesized that epithelial-mesenchymal transition (EMT) may play a major role. We investigated this in vitro by treating hepatocellular carcinoma cells under 1.0% O2. After the hypoxia treatment, the cells exhibited some morphological changes including cell elongation, cytoskeletal rearrangement, and junctional disruption. Moreover, expression of the epithelia-specific marker E-cadherin was decreased and expression of the myofibroblast-specific marker vimentin was detected in the treated cells. Cell migration and ECM gel invasion were increased. These findings were consistent with events observed during EMT. Hypoxia-induced EMT is accompanied by increased phosphorylation, activation of Akt and the downstream signaling. Hypoxia-induced EMT was blocked by PI3K inhibitor LY294002. The results suggest that the PI3K/Akt-dependent signaling pathways serve to regulate hypoxia-induced EMT of hepatocellular carcinoma cells.  相似文献   

6.
Epithelial-mesenchymal transition (EMT), crucial during embryogenesis for new tissue and organ formation, is also considered to be a prerequisite to cancer metastasis. We report here that the protein tyrosine phosphatase Pez is expressed transiently in discrete locations in developing brain, heart, pharyngeal arches, and somites in zebrafish embryos. We also find that Pez knock-down results in defects in these organs, indicating a crucial role in organogenesis. Overexpression of Pez in epithelial MDCK cells causes EMT, with a drastic change in cell morphology and function that is accompanied by changes in gene expression typical of EMT. Transfection of Pez induced TGFbeta signaling, critical in developmental EMT with a likely role also in oncogenic EMT. In zebrafish, TGFbeta3 is co- expressed with Pez in a number of tissues and its expression was lost from these tissues when Pez expression was knocked down. Together, our data suggest Pez plays a crucial role in organogenesis by inducing TGFbeta and EMT.  相似文献   

7.
Epithelial-mesenchymal transition (EMT) and the acquisition of invasive potential are key events in tumor progression. We now show that CIIA, originally identified as an anti-apoptotic protein, induces the EMT and promotes cell migration and invasion. Ectopic expression of CIIA induced down-regulation of E-cadherin and claudin-1 as well as up-regulation of N-cadherin in MDCK cells. It also disrupted the differentiated epithelial morphology of MDCK cells grown in three-dimensional Matrigel cultures as well as increased the migration and invasion of MDCK cells in vitro. Furthermore, depletion of endogenous CIIA by RNA interference inhibited the migration and invasion of HeLa cells, and this inhibition was abolished by RNA interference-mediated depletion of claudin-1. These results suggest that CIIA functions as an inducer of cell invasion, and this effect is mediated, at least in part, through down-regulation of claudin-1.  相似文献   

8.
9.
Vasohibin is thought to be an important negative feedback regulator of angiogenesis that is selectively induced in endothelial cells by VEGF. Here, we assessed the role of vasohibin on HIF-1α expression under oxidative stress induced by hydrogen peroxide (H2O2) in HUVEC. VEGF induced significant cell growth that was associated with an increase in vasohibin expression. Following H2O2-pretreatment, VEGF further increased cell growth but this was contrastingly associated with a decrease in vasohibin expression when compared with VEGF alone. Interestingly, vasohibin inhibited cell proliferation through degradation of HIF-1α expression during H2O2-pretreatment. Furthermore, vasohibin elevated the expression of prolyl hydroxylase (PHD). These results suggest that vasohibin plays crucial roles as a negative feedback regulator of angiogenesis through HIF-1α degradation via PHD.  相似文献   

10.
The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.  相似文献   

11.
Expression of epithelial-mesenchymal transition (EMT) markers has been detected clinically in benign prostatic hyperplasia (BPH) tissues. To understand the molecular basis, we investigated the role of stromal microenvironment in the progression of EMT in BPH cells. First, we used cell culture supernatant from normal prostate stromal WPMY-1 cells to provide supernatant-conditioned medium (WSCM) to culture the BPH-1 cell line. Then, the morphological changes and migratory capacity were detected in BPH-1 cells. The expression of EMT markers was examined in BPH-1 cells by Western blot and immunofluorescent analysis. Finally, to investigate the role of transforming growth factor beta 1 (TGF-β1) in this process, the WSCM-cultured cells were treated with monoclonal antibody against TGF-β1 to study its effect on EMT. We found that the morphology of BPH-1 cells changed to a spindle-like shape after cultured in WSCM, and the levels of E-cadherin and cytokeratin 5/8 (CK5/8) were significantly lower than the cells cultured in ordinary medium. These BPH-1 cells were also tested positive for mesenchymal markers vimentin and a-smooth muscle actin (SMA) as well as Snail. We also found WSCM can increase the migratory capacity of BPH-1 cells. In addition, when they were treated with anti-TGF-β1, upregulation of E-cadherin and CK5/8 levels was observed but no expression of vimentin, alpha-SMA or Snail was detected. Furthermore, phosphorylated-Smad3 expression in WSCM-cultured BPH-1 cells was also suppressed by anti-TGF-β1 treatment. Our results demonstrated that stromal cell supernatant was able to induce EMT in BPH-1 cells, possibly through secreting TGF-β1 to activate Smad signaling. Our results suggest novel molecular targets for clinical treatment of BPH by modification of stromal microenvironment through inhibiting TGF-β1/Smad expression.  相似文献   

12.
13.
Neural crest cells (NCCs) are pluripotent migratory cells that are crucial to the development of the peripheral nervous system, pigment cells and craniofacial cartilage and bone. NCCs are specified within the dorsal ectoderm and undergo an epithelial to mesenchymal transition (EMT) in order to migrate to target destinations where they differentiate. Here we report a role for a member of the semaphorin family of cell guidance molecules in NCC development. Morpholino-mediated knockdown of Sema3d inhibits the proliferation of hindbrain neuroepithelial cells. In addition, Sema3d knockdown reduces markers of migratory NCCs and disrupts NCC-derived tissues. Similarly, expression of a dominant-repressor form of TCF (DeltaTCF) reduces hindbrain cell proliferation and leads to a disruption of migratory NCC markers. Moreover, expression of DeltaTCF downregulates sema3d RNA expression. Finally, Sema3d overexpression rescues reduced proliferation caused by DeltaTCF expression, suggesting that Sema3d lies downstream of Wnt/TCF signaling in the molecular pathway thought to control cell cycle in NCC precursors.  相似文献   

14.
Development is punctuated by morphogenetic rearrangements of epithelial tissues, including detachment of motile cells during epithelial–mesenchymal transition (EMT). Dramatic actin rearrangements occur as cell–cell junctions are dismantled and cells become independently motile during EMT. Characterizing dynamic actin rearrangements and identifying actin machinery driving these rearrangements is essential for understanding basic mechanisms of cell–cell junction remodeling. Using immunofluorescence and live cell imaging of scattering MDCK cells we examine dynamic actin rearrangement events during EMT and demonstrate that zyxin–VASP complexes mediate linkage of dynamic medial actin networks to adherens junction (AJ) membranes. A functional analysis of zyxin in EMT reveals its role in regulating disruption of actin membrane linkages at cell–cell junctions, altering cells' ability to fully detach and migrate independently during EMT. Expression of a constitutively active zyxin mutant results in persistent actin‐membrane linkages and cell migration without loss of cell–cell adhesion. We propose zyxin functions in morphogenetic rearrangements, maintaining collective migration by transducing individual cells' movements through AJs, thus preventing the dissociation of individual migratory cells. J. Cell. Physiol. 222: 612–624, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
17.
Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a "cuboidal" epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-beta-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.  相似文献   

18.
19.
上皮-间质转化(EMT)在肿瘤侵袭转移发展进程中起着重要的作用.转化生长因子-β(TGF-β)已被证实为肿瘤EMT的主要诱导剂.然而,其分子机制仍有待深入研究.该研究旨在探讨TGF-β1促进非小细胞肺癌(NSCLC)细胞系SPC-A1上皮-间质转化过程中的分子机制.细胞的形态学检查结果显示,TGF-β1刺激SPC-A1细胞后细胞形态变成梭形.Transwell侵袭实验揭示,TGF-β1刺激后细胞侵袭能力明显增强.Western印迹结果证明,与未经TGF-β1刺激的SPC-A1细胞比较,EMT上皮标志物上皮-钙粘蛋白(E-cadherin)表达明显下调,而间质标志物波形蛋白(vimentin)明显上调,p-AKT、p-ARK5的表达也明显增强.此外,转录因子Snail在细胞核内的表达水平明显增强.TGF-β1和PI3K抑制剂LY294002同时刺激SPC-A1细胞后,p-AKT、p-ARK5较只加TGF-β1时表达明显降低,Snail在核内的表达水平也明显降低.结果提示,TGF-β1通过激活AKT、ARK5磷酸化,促进转录因子Snail入核,进而导致SPC-A1细胞EMT.  相似文献   

20.
Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号