首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Probiotics and Antimicrobial Proteins - Diseases in aquatic organisms, including fish, are a major concern in aquaculture production. In this present investigation, we have evaluated the beneficial...  相似文献   

2.
The objective of this study was to characterise the antagonistic activity of cellular components of potential probiotic bacteria isolated from the gut of healthy rohu (Labeo rohita), a tropical freshwater fish, against the fish pathogen, Aeromonas hydrophila. Three potential probiotic strains (referred to as R1, R2, and R5) were screened using a well diffusion, and their antagonistic activity against A. hydrophila was determined. Biochemical tests and 16S rRNA gene analysis confirmed that R1, R2, and R5 were Lactobacillus plantarum VSG3, Pseudomonas aeruginosa VSG2, and Bacillus subtilis VSG1, respectively. Four different fractions of cellular components (i.e. the whole-cell product, heat-killed whole-cell product [HKWCP], intracellular product [ICP], and extracellular product) of these selected strains were effective in an in vitro sensitivity test against 6 A. hydrophila strains. Among the cellular components, the ICP of R1, HKWCP of R2, and ICP of R5 exhibited the strongest antagonistic activities, as evidenced by their inhibition zones. The antimicrobial compounds from these selected cellular components were partially purified by thin-layer and high-performance liquid chromatography, and their properties were analysed. The ranges of pH stability of the purified compounds were wide (3.0–10.0), and compounds were thermally stable up to 90 °C. Considering these results, isolated probiotic strains may find potential applications in the prevention and treatment of aquatic aeromonosis.  相似文献   

3.
Three halotolerant lactobacilli (Lactobacillus plantarum, L. pentosus, and L. acidipiscis) isolated from a ripened Mexican tropical cheese (double cream Chiapas cheese) were evaluated as potential probiotics and compared with two commercial probiotic strains (L. casei Shirota and L. plantarum 299v) from human origin. All the strains survived the in vitro gastrointestinal simulation from the oral cavity to the ileum. During the stomach simulation, all the strains survived in satiety conditions (60 min, pH 3.0, 3 g/L pepsin, 150 rpm) and only L. pentosus could not survive under fasting conditions (60 min, pH 2.0, 3 g/L pepsin, 150 rpm). All the strains showed a strong hydrophilic character with low n-hexadecane and a variable chloroform affinity. L. plantarum showed a mucin adhesion rate similar to that of L. plantarum 299v and L. casei Shirota, while L. pentosus and L. acidipiscis had a lower mucin adhesion. The isolated halotolerant lactobacilli exhibited similar antimicrobial activity against some gram-positive and gram-negative pathogens in comparison with the two commercial strains. In addition, the proteinaceous character of the antimicrobial agents against the most pathogenic strains was demonstrated. The compounds showed a low molecular weight (less than 10 kDa). Besides, L. plantarum and L. acidipiscis were able to produce the enzyme β-galactosidase. Finally, L. pentosus was able to deconjugate taurocholic, taurodeoxycholic, glycocholic, and glycodeoxycholic acids better than the two commercial strains analyzed. All these results suggest that the halotolerant lactobacilli isolated from this ripened Mexican cheese could be potentially probiotic. This is the first time that halotolerant lactic acid bacteria have been shown to have probiotic properties.  相似文献   

4.

Bollo is a traditional Goan fermented food in which coarse wheat/wheat and finger millet is leavened with toddy. We here isolated 42 yeast strains from Bollo batter. Initial screening of the isolates with probiotic properties yielded four yeast isolates (DABRP1, DABRP2, DABRP5 and DABRP12). These isolates exhibited tolerance to high bile salt concentration and acidic pH and resistance to various antibiotics, which indicated their probiotic nature. All these yeast isolates were identified as Saccharomyces cerevisiae through D1D2-LSU-rDNA sequencing. These yeast isolates also showed higher percent hydrophobicity towards chloroform followed by n-hexadecane and o-xylene indicating their mucosal surface-adhesive property. To evaluate the safety of the isolates for them to be called as generally recognized as safe, the pathogenic behavior of the isolates determined through the in vitro hemolysis assay and evaluation of DNase and gelatinase activities. None of the isolates exhibited hemolysis or produced DNase or gelatinase and thus were considered potentially safe. In terms of beneficial effects, the most potent isolate S. cerevisiae DABRP5 showed antibacterial activity against the test pathogens. It also showed excellent antioxidant activity with DPPH free radical scavenging activity of 68.85 ± 0.69%, anti-inflammatory activity with 60.39 ± 0.34% inhibition of protein denaturation, and antidiabetic activity with 71.75 ± 0.45% inhibition of α-amylase activity. The isolate produced α-amylase, lipase, and β-galactosidase. The probiotic potential of the isolate S. cerevisiae DABRP5 was similar to that of the reference strain (Saccharomyces boulardii CNCM I-745) used in this study. The results thus indicate that yeast isolates from Bollo batter have probiotic potential.

  相似文献   

5.
The culture conditions for extracellular production of phytase by two strains of Bacillus licheniformis (LF1 and LH1) isolated from the proximal and distal intestine of rohu (Labeo rohita) were optimized to obtain maximum level of phytase. Both the strains were cultured TSA broth for 24 h at 37 ± 2 °C, when average viable count of 9.75 × 10cells ml?1 culture broth was obtained. This was used as the inoculum for the production medium. Sesame (Sesamum indicum) oilseed meal was used as the source of phytic acid (substrate). The effects of moisture, pH, temperature, fermentation period, inoculum size, different nitrogen sources, vitamins and surfactants on phytase production by these two strains were evaluated. Phytase yield was highest (1.87 U in LF1 and 1.57 U in LH1) in solid-state fermentation. Enzyme production in both the isolates increased in an optimum pH range of 5.5–6.5. Minimum phytase production was observed at 50 °C, while maximum production was obtained at 40 °C. To standardize the fermentation period for phytase production, production rate was measured at 12-h intervals up to 120 h. Enzyme production increased for 72 h of fermentation in both strains, and decreased thereafter. The enzyme production increased with increased inoculum size up to 3.0 percentage points for the strain LF1 and up to 2.0 % for the strains LH1. Ammonium sulphate as the nitrogen source was most effective in LF1, while beef extract proved useful to maximize enzyme production by LH1.  相似文献   

6.
Approximately 25 strains of lactobacilli isolated from different dairy products and fermented vegetables were screened according to their possibility to show the high auto-aggregation and co-aggregation. The strains Lactobacillus helveticus INRA-2010-H11, Lactobacillus rhamnosus INA-5.1, and Lactobacillus acidophilus JM-2012 were determined to have the high auto-aggregation (approximately 73, 46, and 70.5% correspondingly). A high co-aggregation capacity (75.53%) for strains INRA-2010-H11 and JM-2012 was shown. The adhesion degree of INRA-2010-H11 on the surface of buccal epithelial cells was 88.23%. The study of INRA-2010-H11, JM-2012, and both strains’ mixture (1:1) adhesion capacity on the surface of epithelial HeLa cells revealed the adhesion of 1.1 × 106, 6.3 × 104, and 2.3 × 105 CFU, respectively, from starter amount of CFU 107 and 108 for both strains. In vivo experiments of LAB adhesion in gastrointestinal tract of mouse revealed the presence of 2.5 × 109, 1.2 × 109, and 1.5 × 109 CFU of LAB in control and groups of mouse, fed by INRA-2010-H11 and mixture, respectively. Feeding by investigated lactobacilli was suggested to lead to microbiota biodiversity reduction in small intestine and colon and its augmentation in stomach. Thus, INRA-2010-H11 demonstrated a high aggregation and adhesion activity so it has the potential as a good probiotic strain.  相似文献   

7.

Present study is intended to assess the probiotic properties of Bacillus spp. isolated from idli batter, a traditional fermented food of Southern India and Sri Lanka. A total of 32 isolates were screened for potential pathogenic behaviour through haemolysis assay, DNase activity and antibiotics sensitivity. Two of the isolates were found to be potentially safe and identified as Bacillus spp. These strains were characterized for in vitro probiotic attributes and antioxidant activity. Both the strains showed strong acid and bile tolerance, transit tolerance, lysozyme tolerance, cell surface hydrophobicity, auto-aggregation, co-aggregation, biofilm formation potential and adhesion to human colon adenocarcinoma (HT 29) cell line demonstrating potential probiotic ability. These strains also exhibited considerable cholesterol binding, thermostability, β-galactosidase production, proteolytic, amylolytic and lipolytic activity. Cell-free supernatant inhibited the biofilm formation by Pseudomonas aeruginosa (KT266804) to 90%. Intact cells showed significant DPPH (41%), hydroxyl (31%), radical scavenging activity and lipid peroxidation inhibition (20.38%), while cell-free extracts exhibited significant superoxide anion radical scavenging activity (16.25%). Results revealed that isolates could be potential probiotic candidate after further assessment of in vivo probiotic properties and safety evaluation and could be utilised as starter cultures in functional foods.

  相似文献   

8.
In this study, we aimed to evaluate the in vitro probiotic characteristics of three bacteria, Lactobacillus plantarum VSG3, Pseudomonas aeruginosa VSG2, and Bacillus subtilis VSG1, isolated from the gut of Labeo rohita. The bacterial isolates tolerated low pH and high bile concentrations in the fish well. The bacterial adhesion capacity to fish intestinal mucosa revealed that the three potential probiotic isolates had a significantly higher adhesion capacity compared to the pathogenic strains tested. L. plantarum VSG3 exhibited the best adhesion capacity (19.1?%) to the intestinal mucosa. Among the isolates, L. plantarum VSG3 and P. aeruginosa VSG2 showed strong antibacterial activities against fish pathogens as measured in spent culture liquids. Moreover, all the isolates were susceptible to each tested antibiotic, which ensured their inability to exhibit antibiotic-resistance properties. Considering these promising results, selected strains should be further studied to determine their probiotic effects in vivo in fish.  相似文献   

9.
This study is aimed to isolate some novel probiotics from the soils of North East Himalayas. Eleven Gram positive isolates were obtained in MRS with Oxgall media from soil samples. Four of the isolates withstood the in vitro gastric juice pH 3.0 and 0.45% bile salt tolerance screening. Among these, PBT 3 showed high cell surface hydrophobicity and adhered to the Caco-2 cells. 16s rDNA gene sequences of this probiotic strains were identified as Bacillus amyloliquefaciens (accession no: JF836079). In in vivo bioefficacy evaluation by DSS-induced colitis animals, B. amyloliquefaciens significantly ameliorated the loss in body weight. Further, the treatment altered the levels of myeloperoxidase, lipoperoxides, and mucous content in the colon tissues compared with normal colon. It reduced the protein and mRNA levels of pro-inflammatory cytokines such as TNF-α and IL-1β. These biochemical findings were supported by histopathological evidences. Our study reports the use of B. amyloliquefaciens isolated from Himalayan soil as probiotic and its beneficial effect on IBD for the first time and suggests that this could be used as potential probiotics in functional foods or as a curative agent.  相似文献   

10.
Probiotics and Antimicrobial Proteins - Artisanal fermented beverages have been associated with beneficial effects for a long time. In Mexico, there are a wide variety of artisanal fermented...  相似文献   

11.

Bacteriocin production is considered a favorable property for various beneficial cultures. In addition to their potential as biopreservatives, bacteriocins are also promising alternatives for the control of multidrug-resistant pathogens and the inhibition of some viruses and cancer cells. The objective of this study was to screen and characterize a bacteriocin-producing strain with the aim of its future application for control of Listeria monocytogenes, an important food-borne pathogen. A total of 22 potentially bacteriocinogenic strains active against L. monocytogenes ATCC15313 were isolated from locally produced kimchi through a three-level approach. Pure cultures were obtained according to good microbiological practices and differentiated through RAPD-PCR using the primers OPL01, OPL09, and OPL11. Altogether, 5 strains were selected for further study. Specific focus was given to strain ST05DL based on its specific inhibitory activity against L. monocytogenes ATCC15313, while not affecting different strains belonging to the genera Lactobacillus, Pediococcus, Leuconostoc, and Weissella, most of which are beneficial microorganisms. The strain ST05DL was identified as Bacillus amyloliquefaciens based on its sugar fermentation profile obtained through API50CHB analysis and 16S rRNA partial sequencing. The antimicrobial compound produced by B. amyloliquefaciens ST05DL was found to be sensitive to pepsin and α-chymotrypsin, evidence of its proteinaceous nature. The presence of skim milk, NaCl, Tween 80, glycerol, and SDS did not affect the antimicrobial activity. The addition of 20% cell-free supernatant (CFS) obtained from a 24-h culture of B. amyloliquefaciens ST05DL to an exponentially growing culture of L. monocytogenes ATCC15313 successfully inhibited the test microorganisms during the monitored 10-h incubation. Optimal bacteriocin production by B. amyloliquefaciens ST05DL was observed during the stationary phase at 12 h (800 AU/mL) and remained stable for the next 15 h. The ratio between live and dead cells during this period was 74.37% and 25.66%, respectively, as determined by flow cytometry. The presence of the virulence genes hblA, hblB, hblC, nheA, nheB, and nheC was not detected in the total DNA of B. amyloliquefaciens ST05DL, and the strain was resistant only to ampicillin out of 10 tested antibiotics. Future evaluation of expressed bacteriocin/s by B. amyloliquefaciens ST05DL (amino acid sequence, molecular mass, cytotoxicity, detailed mode of action, etc.), will be the next step in the characterization and its potential application as biopreservative and/or pharmaceutical product.

  相似文献   

12.
Probiotics and Antimicrobial Proteins - Vulvovaginal candidiasis (VVC) is a very common infection worldwide that is mainly caused by Candida albicans. In a previous study, we showed that...  相似文献   

13.
Probiotics and Antimicrobial Proteins - Bovine mastitis causes economic losses on dairy farms worldwide. Lactic acid bacteria (LAB) in animal health are an alternative tool to avoid antibiotic...  相似文献   

14.
The current study investigated the immunomodulatory potential of ethyl acetate soluble supernatant of Lactobacillus casei (LC-EAS) in vitro. The effect of LC-EAS on nitric oxide release was analyzed in RAW 264.7 cells, wherein, an inhibition in nitric oxide production through suppression of inducible nitric oxide synthase mRNA expression was observed. Evaluation of LC-EAS on LPS-induced peripheral blood mononuclear cells showed a down-regulation in TNF-α and IL-6 genes and an upregulation of IL-10. An inhibition in the protein expression of NF-κB, ERK1/2 and STAT3 phosphorylation confirms the immunomodulatory potential of LC-EAS. The effect of LC-EAS on in vitro intestinal epithelial cells was investigated using HT-29 human colon adenocarcinoma cancer cells. LC-EAS exhibited an inhibition of NF-κB and ERK1/2 phosphorylation, whereas STAT3 phosphorylation was unregulated. To evaluate the downstream target of STAT3 upregulation, expression of the intestinal trefoil factor TFF3 which is a NF-κB regulator and STAT3 downstream target was studied. LC-EAS was observed to elevate TFF3 mRNA expression. Overall the study shows that the anti-inflammatory potential of LC-EAS is through inhibition of NF-κB in different cell types.  相似文献   

15.
Devi  A. A.  Khan  M. I. R.  Choudhury  T. G.  Kamilya  D. 《Microbiology》2022,91(2):207-214
Microbiology - Microbiota of the fish gut contains many beneficial bacteria that can be used as probiotics in aquaculture. In this study, several in vitro assays along with an in vivo safety...  相似文献   

16.
Probiotics and Antimicrobial Proteins - Hypercholesterolemia is a risk factor for cardiovascular diseases, and hence, reducing serum cholesterol levels could reduce the incidence. In this study, we...  相似文献   

17.
The present study aimed to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from Chinese traditional fermented buffalo milk. Out of 22 isolates, 11 were putatively identified as LAB preliminarily. A total of six LAB strains displayed strong adhesion to HT-29 cells and all these strains showed preferable tolerance to artificially simulated gastrointestinal juices. WDS-4, WDS-7, and WDS-18 exhibited excellent antioxidant capacities, including DPPH radical, ABTS+ radical, and superoxide anion scavenging activities. Compared with the other two LAB strains, WDS-7 had a stronger inhibition effect on four pathogens. Based on the 16S rRNA gene sequencing and phylogenetic analysis, WDS-7 was identified as Lactobacillus delbrueckii ssp. indicus and selected to assess the potential and safety of probiotics further. The results revealed that WDS-7 strain had a strong capacity for acid production and good thermal stability. WDS-7 strain also possessed bile salt hydrolase (BSH) activity. Compared to LGG, WDS-7 was a greater biofilm producer on the plastic surface and exhibited a better EPS production ability (1.94 mg/ml as a glucose equivalent). WDS-7 was proved to be sensitive in the majority of tested antibiotics and absence of hemolytic activity. Moreover, no production of biogenic amines and β-glucuronidase was observed in WDS-7. The findings of this work indicated that L. delbrueckii ssp. indicus WDS-7 fulfilled the probiotic criteria in vitro and could be exploited for further evaluation in vivo.  相似文献   

18.
19.

The aim of the present study was to investigate the in vitro antioxidant potential of the cell-free extracts (CFE) of two probiotic bacteria Bacillus amyloliquefaciens ssp. plantarum IMV B-7142 and Bacillus amyloliquefaciens ssp. plantarum IMV B-7143 and their hepatoprotective effects. These strains are the main components of the veterinary probiotic preparation endosporyn. The CFE of probiotic bacteria were able to stabilize the 2.2-diphenyl-1-picrylhydrazyl radical to its neutral form at their cultivation during 24–48 h. But this index was more pronounced for the IMV B-7142 strain and amounted to 44.4–51.2%. The hydroxyl radical scavenging activity of the CFE of probiotic bacteria increased more than 70–80% regardless of the cultivation period (24–48 h). The antioxidant potential of probiotic strains is associated with the synthesis of the multiple biologically active molecules. The phenolic and benzoic acids-antioxidants (gallic, 4-hydroxyphenylacetic, caffeic, syringic, p-coumaric, trans-ferulic, and trans-cinnamic acids) were identified among metabolites of B. amyloliquefaciens ssp. plantarum strains. The CFE of probiotic strains were able to protect of rat hepatocytes from the toxic effects of the carbon tetrachloride (CCl4). Post-treatment of stress-induced rat hepatocytes by CFE of the IMV B-7042 was accompanied by an increase of the catalase activity of cells by 485.2 mM/min × mg of protein, compared to stress-damaged sample. In doing so, the content of the main markers of oxidative stress: lipid hydroperoxides and malondialdehyde decreased significantly. The results suggested that CFE of both probiotic strains have potent antioxidant properties and effectively protect of stress-damaged rat hepatocytes.

  相似文献   

20.
The Gram-positive thin rods of a Bacillus species were identified and designated as Bacillus coagulans RK - 02 through the standard microbiological and biochemical characterization procedures, followed by data analysis and comparison with the characteristics given in Bergey’s manual of systematic bacteriology. The culture was further characterized and confirmed as Bacillus coagulans by 16S rDNA sequence analysis wherein about 755 nucleotides of 16S rDNA was amplified and cloned in pGEM-T vector and subsequently sequenced. Sequence was blasted against the nr database of NCBI. Multiple alignments were done with some selected and related sequences using Clustal W. Phylogenetic trees were drawn with the same software after the distances were determined by neighbor-joining algorithm. The in vitro studies on the probiotic properties demonstrated that our isolate could prove to be a potential probiotic with spore-forming and lactic acid-producing abilities coupled with acid and bile tolerance properties and antimicrobial action. In addition to these characteristics, the bacterium also produced enzymes such as amylase, cellulase, lipase, protease, lactase and catalase, which can help in improving digestion and overall health, alleviate lactose intolerance and remove oxidative stresses, required for the well-being of the consumers. In our previously reported studies, an exopolysaccharide (EPS), a probioactive molecule produced by the same bacterium, showed very significant antioxidant, antihyperglycemic and emulsification activities. Thus, Bacillus coagulans RK - 02 is a well-characterized promising probiotic for its potential commercial applications to pharmaceutical, nutraceutical and functional food formulations with care-free storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号