首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Aim

To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice.

Methods

Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage.

Results

The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model.

Conclusions

Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L. fermentum CCTCC M206110 proved to be effective at attenuating DSS-induced colitis. The potential probiotic effect of L. plantarum NCIMB8826 on UC has yet to be assessed.  相似文献   

2.
The effect of lactoperoxidase (LPO) on dextran sulfate sodium-induced colitis was examined in mice. After 9 d of colitis induction, weight loss, colon shortening, and the histological score were significantly suppressed in mice orally administered LPO (62.5 mg/body/d) as compared to a group administered bovine serum albumin. These results suggest that LPO exhibits anti-inflammatory effects in the gastrointestinal tract.  相似文献   

3.
《Genomics》1999,55(2):147-156
The genetic basis for differential sensitivity of inbred mice to inflammatory bowel disease induced by dextran sulfate sodium (DSS) is unknown. Susceptible C3H/HeJ were outcrossed to partially resistant C57BL/6J mice. F2 and N2 progeny were phenotyped by evaluating histopathologic lesions in large intestine detected 16 days after a 5-day period of feeding 3.5% DSS. Screening for DSS colitis (Dssc) loci revealed quantitative trait loci (QTL) on Chr 5 (Dssc1) and Chr 2 (Dssc2). These traits contributed additively, explaining 17.5% of the variation in total colonic lesions. Additional QTL on Chr 18 and 1 that collectively explained 11% of the variation in total colon lesions were indicated. In the cecum, only a putative QTL on Chr 11 was associated with pathology (lesion severity) in the cecum. Reduced DSS susceptibility was observed in congenic stocks in which the highly susceptible NOD/Lt strain carried putative resistance alleles from either B6 on Chr 2 or from the highly resistant NON/Lt strain on Chr 9. We conclude that multiple genes control susceptibility to DSS colitis in mice. PossibleDssccandidate genes are discussed in terms of current knowledge of inflammatory bowel disease susceptibility loci in humans.  相似文献   

4.
5.

Background and Aim

We previously identified an anti-inflammatory compound, zonarol, a hydroquinone isolated from the brown algae Dictyopteris undulata as a marine natural product. To ascertain the in vivo functions of zonarol, we examined the pharmacological effects of zonarol administration on dextran sulfate sodium (DSS)-induced inflammation in a mouse model of ulcerative colitis (UC). Our goal is to establish a safe and effective cure for inflammatory bowel disease (IBD) using zonarol.

Methods and Results

We subjected Slc:ICR mice to the administration of 2% DSS in drinking water for 14 days. At the same time, 5-aminosalicylic acid (5-ASA) at a dose of 50 mg/kg (positive control) and zonarol at doses of 10 and 20 mg/kg, were given orally once a day. DSS-treated animals developed symptoms similar to those of human UC, such as severe bloody diarrhea, which were evaluated by the disease activity index (DAI). Treatment with 20 mg/kg of zonarol, as well as 5-ASA, significantly suppressed the DAI score, and also led to a reduced colonic ulcer length and/or mucosal inflammatory infiltration by various immune cells, especially macrophages. Zonarol treatment significantly reduced the expression of pro-inflammatory signaling molecules, and prevented the apoptosis of intestinal epithelial cells. Finally, zonarol protected against in vitro lipopolysaccharide (LPS)-induced activation in the RAW264.7 mouse macrophage cell line.

Conclusions

This is the first report that a marine bioproduct protects against experimental UC via the inhibition of both inflammation and apoptosis, very similar to the standard-of-care sulfasalazine, a well-known prodrug that releases 5-ASA. We believe that the oral administration of zonarol might offer a better treatment for human IBDs than 5-ASA, or may be useful as an alternative/additive therapeutic strategy against UC, without any evidence of side effects.  相似文献   

6.
Tumor necrosis factor-α (TNF-α) is a key factor for the pathogenesis of inflammatory bowel diseases (IBD), whose function is known to be mediated by TNF receptor 1 (TNFR1) or 2. However, the precise role of the two receptors in IBD remains poorly understood. Herein, acute colitis was induced by dextran sulfate sodium (DSS) instillation in TNFR1 or 2−/− mice. TNFR1 ablation led to exacerbation of signs of colitis, including more weight loss, increased mortality, colon shortening and oedema, severe intestinal damage, and higher levels of myeloperoxidase compared to wild-type counterparts. While, TNFR2 deficiency had opposite effects. This discrepancy was reflected by alteration of proinflammatory cytokine and chemokine production in the colons. Importantly, TNFR1 ablation rendered enhanced apoptosis of colonic epithelial cells and TNFR2 deficiency conferred pro-apoptotic effects of lamina propria (LP)-immune cells, as shown by the decreased ratio of Bcl-2/Bax and enhanced nuclear factor (NF)-κB activity.  相似文献   

7.
Previously we reported that auraptene was a potent suppressant for matrix metalloproteinase (MMP)-7 expression in HT-29 human colon cancer cells. In the present study, we examined the effects of auraptene on MMP-2, -7, and -9 expression in colonic mucosa from dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Auraptene remarkably suppressed the DSS-induced gelatinolytic activity of MMP-7 as well as the expression of MMP-2 and -9, suggesting that it might be useful in anti-metastatic therapies via the targeting of MMPs.  相似文献   

8.
Doublecortin-like kinase 1 (Dclk1), a microtubule-associated kinase, marks the fifth lineage of intestinal epithelial cells called tuft cells that function as tumor stem cells in Apc mutant models of colon cancer. In order to determine the role of Dclk1 in dextran sulfate sodium (DSS) induced colonic inflammation both intestinal epithelial specific Dclk1 deficient (VillinCre;Dclk1f/f) and control (Dclk1f/f) mice were fed 3% DSS in drinking water for 9 days, allowed to recover for 2 days, and killed. The clinical and histological features of DSS-induced colitis were scored and immunohistochemical, gene expression, pro-inflammatory cytokines/chemokines, and immunoblotting analyses were used to examine epithelial barrier integrity, inflammation, and stem and tuft cell features. In DSS-induced colitis, VillinCre;Dclk1f/f mice demonstrated exacerbated injury including higher clinical colitis scores, increased epithelial barrier permeability, higher levels of pro-inflammatory cytokines and chemokines, decreased levels of Lgr5, and dysregulated Wnt/b-Catenin pathway genes. These results suggest that Dclk1 plays an important role in regulating colonic inflammatory response and colonic epithelial integrity.  相似文献   

9.
Ulcerative colitis (UC) is a common chronic remitting disease but without satisfactory treatment. Alternative medicine berberine has received massive attention for its potential in UC treatment. Conventional therapies with the addition of berberine are becoming attractive as novel therapies in UC. In the present study, we investigated the preclinical activity of a conventional oral 5-aminosalicylic acid (5-ASA) therapy plus berberine in experimental colitis. A subclinical dose of 5-ASA (200 mg/kg/day) alone or 5-ASA plus berberine (20 mg/kg/day) was orally administered for 30 days to C57BL/6 mice with colitis induced by three cycles of 2% dextran sulfate sodium (DSS). The disease severity, inflammatory responses, drug accumulation and potential toxicity of colitis mice were examined. The results showed that comparing to 5-ASA alone, 5-ASA plus berberine more potently ameliorated DSS-induced disease severity, colon shortening, and colon histological injury. Further, the up-regulation in mRNA level of colonic TNF-α as well as NFκB and JAK2 phosphorylation caused by DSS were more pronouncedly reversed in animals treated with the combination therapy than those treated with 5-ASA alone. Moreover, the addition of berberine to 5-ASA more significantly inhibited lymphocyte TNF-α secretion of DSS mice than 5-ASA alone. In the meanwhile, no extra drug accumulation or potential toxicity to major organs of colitis mice was observed with this combination treatment. In summary, our studies provide preclinical rationale for the addition of berberine to 5-ASA as a promising therapeutic strategy in clinic by reducing dose of standard therapy.  相似文献   

10.
In the present study, probiotic Dahi (LaBb Dahi) containing Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 was selected as a probiotic therapy to investigate its protective effect on dextran sodium sulfate (DSS)-induced ulcerative colitis model in mice that mimics the picture in human. LaBb Dahi was prepared by co-culturing Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of L. acidophilus LaVK2 and B. bifidum BbVK3 in buffalo milk (3% fat). Four groups of swiss albino male mice (12 each) were fed buffalo milk (3% fat), buffalo milk (3% fat) plus DSS, Dahi plus DSS, and LaBb Dahi plus DSS, respectively, for 17?days with basal diet. The myeloperoxidase (MPO) activity, levels of tumor necrosis factor-?? (TNF-??), interleukin-6 (IL-6) and interferon (IFN-??) were assessed as inflammatory markers, and the histopathological picture of the colon of mice was studied. DSS-induced colitis appeared to induce significant increase in MPO activity, levels of TNF-??, IL-6 and IFN-??. Feeding with LaBb Dahi offered significant reduction in MPO activity, levels of TNF-??, IL-6 and IFN-?? when compared to either buffalo milk group or group III (Dahi). The present study suggests that LaBb probiotic Dahi can be used to combat DSS-induced biochemical and histological changes and to achieve more effective treatment for ulcerative colitis.  相似文献   

11.
大肠杆菌K88体外黏附Caco-2细胞及其对细胞膜的影响   总被引:1,自引:0,他引:1  
采用体外Caco-2细胞培养模型,研究大肠杆菌K88黏附Caco-2肠上皮细胞后对其存活率及增殖活力、细胞膜磷脂酶A2、细胞内Ca^2 浓度及膜流动性的影响。结果表明,细菌黏附3h后细胞活力明显下降,PLA2活性升高,细胞内Ca^2 浓度增加,细胞膜流动性降低,从而导致肠上皮细胞膜结构和功能的损害。  相似文献   

12.
Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.  相似文献   

13.
Titanate nanotubes can be used as drug delivery systems, but limited information is available on their interactions with intestinal cells. In this study, we investigated the cytotoxicity and cellular uptake of titanate nanotubes on Caco-2 monolayers and found that up to 5 mg/ml concentration, these nanotubes are not cytotoxic and not able to permeate through the intestinal cell layer. Transmission electron microscopic experiments showed that titanate nanotubes are not taken up by cells, only caused a high-density granulation on the surface of the endoplasmic reticulum. According to these results, titanate nanotubes are suitable systems for intestinal drug delivery.  相似文献   

14.
We examined the effects of nickel sulfate at doses 0.5 to 5.0 mg/kg (1/200–1/20 LD50) on the frequency of dominant lethal mutations and double-strand DNA breaks (DSBs) in germline cells and on an increase in frequency in gene mutations W y in pigment cells of first-generation mice. The results indicated that spermatogenesis stages most sensitive to nickel sulfate (at a dose of 1.0 mg/kg) are spermatozoids, early spermatids, late spermatocytes, and stem spermatogonia. No statistically significant increase in the total TSB level was detected in spermatozoids 4 weeks after exposure. At the same time, a significant (P < 0.05) increase in percentage of cells with an extremely high level of DNA fragmentation (supposedly apoptotic cells) was observed upon exposure at a dose of 0.5 mg/kg. Nickel sulfate at doses of 5.0 and 1.0 mg/kg induced a marked increase in the c-kit gene expression in pigment cells of heterozygous first-generation WR mice as compared to control (P < 0.001). It was shown that the nonobservable adverse effect level (NOAEL) of nickel sulfate on the dominant lethal mutation frequency and gene mutations was 1/200 LD50, while the lowest observable adverse effect level (LOAEL) was 1/100 LD50.__________Translated from Genetika, Vol. 41, No. 7, 2005, pp. 894–901.Original Russian Text Copyright © 2005 by Domshlak, Elakov, Osipov.  相似文献   

15.
16.
采用Caco-2细胞培养模型,分析大肠杆菌K88感染Caco-2后的单层细胞跨膜电阻值(TEER)、甘露醇透过率、紧密连接蛋白occludin分布的变化,并在培养液中加入蒙脱石,探讨蒙脱石对大肠杆菌K88感染Caco-2后的屏障功能和紧密连接蛋白表达的影响.结果表明:大肠杆菌K88感染Caco-12细胞后,细胞单层TEER值随时间的延长而降低,感染3 h后TEER值显著低于正常组(P<0.05),而添加蒙脱石组TEER值与正常组无显著差异(P>0.05).蒙脱石剂量在0~1 g/L的范围内,感染Caco-2细胞单层TEER值随着蒙脱石剂量的增加而急剧增加;蒙脱石剂量在1~1.67 g/L的范围内,TEER值变化趋平.感染Caco-2细胞的3H甘露醇表观渗透系数随着时间的延长而增加,各个时间点均显著高于正常组(P<0.05),而蒙脱石组各时间点3H甘露醇表观渗透系数均显著低于大肠杆菌K88感染组(P<0.05).大肠杆菌K88感染后,相邻Caco-2细胞间紧密连接结构遭到破坏,occludin的表达减少,而蒙脱石处理后可使大肠杆菌K88引起的紧密连接结构受损减轻、occludin表达增多.结果提示蒙脱石可有效抑制大肠杆菌K88黏附Caco-2细胞引起的通透性增加、屏障功能损坏,改善紧密连接的结构和OCtludin的表达分布.  相似文献   

17.
18.
The effect of two putative probiotic strains, Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74, on the control of cholesterol efflux in enterocytes was assessed by focusing on the promotion of ATP-binding cassette sub-family G members 5 and 8 (ABCG5 and ABCG8). Differentiated Caco-2 enterocytes were treated with live bacteria, heat-killed bacteria, a bacterial cell wall fraction, and metabolites and were subjected to cholesterol uptake assay, mRNA analysis, and protein analyses. Following LXR-transfection by incubation with CHO-K1 cells in DNA-lipofectin added media, the luciferase assay was conducted for LXR analysis. Treatment of Caco-2 cells with L. rhamnosus BFE5264 (isolated from traditional fermented Maasai milk) and L. plantarum NR74 (isolated from Korean kimchi) resulted in the up-regulation of LXR, concomitantly with the elevated expression of ABCG5 and ABCG8. This was associated with the promotion of cholesterol efflux at significantly higher levels compared to the positive control strain L. rhamnosus GG (LGG). The experiment with CHO-K1 cells confirmed up-regulation of LXR-beta by the test strains, and treatment with the live L. rhamnosus BFE5264 and L. plantarum NR74 strains significantly increased cholesterol efflux. Heat-killed cells and cell wall fractions of both LAB strains induced the upregulation of ABCG5/8 through LXR activation. By contrast, LAB metabolites did not show any effect on ABCG5/8 and LXR expression. Data from this study suggest that LAB strains, such as L. rhamnosus BFE5264 and L. plantarum NR74, may promote cholesterol efflux in enterocytes, and thus potentially contribute to the prevention of hypercholesterolemia and atherosclerosis.  相似文献   

19.
Inflammation derived from pathogen infection involves the activation of toll-like receptor (TLR) signaling. Despite the established immunomodulatory activities of probiotics, studies relating the ability of such bacteria to inhibit the TLR signaling pathways are limited or controversial. In a previous study we showed that Lactobacillus amylovorus DSM 16698T, a novel lactobacillus isolated from unweaned pigs, protects the intestinal cells from enterotoxigenic Escherichia coli (ETEC) K88 infection through cytokine regulation. In the present study we investigated whether the ability of L. amylovorus to counteract the inflammatory status triggered by ETEC in intestine is elicited through inhibition of the TLR4 signaling pathway. We used the human intestinal Caco-2/TC7 cells and intestinal explants isolated from 5 week-old crossbreed Pietrain/Duroc/Large-White piglets, treated with ETEC, L. amylovorus or L. amylovorus cell free supernatant, either alone or simultaneously with ETEC. Western blot analysis showed that L. amylovorus and its cell free supernatant suppress the activation of the different steps of TLR4 signaling in Caco-2/TC7 cells and pig explants, by inhibiting the ETEC induced increase in the level of TLR4 and MyD88, the phosphorylation of the IKKα, IKKβ, IκBα and NF-κB subunit p65, as well as the over-production of inflammatory cytokines IL-8 and IL-1β. The immunofluorescence analysis confirms the lack of phospho-p65 translocation into the nucleus. These anti-inflammatory effects are achieved through modulation of the negative regulators Tollip and IRAK-M. We also found that L. amylovorus blocks the up-regulation of the extracellular heat shock protein (Hsp)72 and Hsp90, that are critical for TLR4 function. By using anti-TLR2 antibody, we demonstrate that TLR2 is required for the suppression of TLR4 signaling activation. These results may contribute to develop therapeutic interventions using L. amylovorus in intestinal disorders of piglets and humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号