首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Twenty healthy, non-smoking subjects were enrolled into a study to investigate the effects of dietary supplementation with essential fatty acid (EFAs) on red blood cell rheology. Ten subjects were given 3 months dietary supplementation with long chain polyunsaturated EFAs containing omega-3 and omega-6 EFAs while 10 others were given placebo (sunflower oil). Venous sampling was performed at 0 and 12 weeks and red blood cell (RBC) aggregation and deformability measured by a filtration system. The results showed a reduction in RBC aggregation in the group given omega-3 and omega-6 EFAs but not in the placebo group. This may be related to changes in the RBC membrane and surface receptor characteristics. Such EFAs may be useful in Raynaud's phenomenon.  相似文献   

3.
4.
Severe endothelial abnormalities are a prominent feature in sepsis with cytokines such as tumor necrosis factor (TNF)alpha being implicated in the pathogenesis. As mimic to inflammation, human umbilical vascular endothelial cells (HUVEC) were incubated with TNFalpha for 22 h, in the absence or presence of the omega-6 fatty acid (FA), arachidonic acid (AA), or the alternative omega-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). TNFalpha caused marked alterations in the PUFA profile and long chain PUFA content of total phospholipids (PL) decreased. In contrast, there was a compensatory increase in mead acid [MA, 20:3(omega-9)], the hallmark acid of the essential fatty acid deficiency (EFAD) syndrome. Corresponding changes were noted in phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, but not in the sphingomyelin fraction. Supplementation with AA, EPA, or DHA markedly increased the respective FA contents in the PL pools, suppressed the increase in MA, and resulted in a shift either toward further predominance of omega-6 or predominance of omega-3 FA. We conclude that short-term TNFalpha incubation of HUVEC causes an EFAD state hitherto only described for long-term malnutrition, and that endothelial cells are susceptible to differential influence by omega-3 versus omega-6 FA supplementation under these conditions.  相似文献   

5.
6.
1. Poikilothermic animals incorporate more polyunsaturated fatty acids (PUFAs) into their cellular membranes as temperature declines, suggesting an increased sensitivity to PUFA limitation in cool conditions. To test this we raised Daphnia magna at different temperatures and investigated the effect of varying dietary PUFA on life history parameters (i.e. growth, reproduction) and the PUFA composition of body tissue and eggs. 2. Upon a PUFA‐rich diet (Cryptomonas sp.) females showed higher concentrations of several ω3 PUFAs in their body tissue at 15 °C than at 20 °C and 25 °C, indicating a greater structural requirement for ω3 PUFAs at low temperature. Their eggs had an equal but higher concentration of ω3 PUFAs than their body tissue. 3. In a life history experiment at 15 and 20 °C we supplemented a diet of a PUFA‐free cyanobacterium with the ω3 PUFA eicosapentaenoic acid (EPA). The growth of D. magna was more strongly EPA limited at low temperature. A greater requirement for structural EPA at 15 °C was indicated by a steeper increase in somatic EPA content with dietary EPA compared to 20 °C. 4. At 20 °C the development of eggs to successful hatching was high when EPA was supplied to the mothers. At 15 °C the hatching success was generally poor, despite of a higher maternal provision of EPA to eggs, compared to that at 20 °C, suggesting that EPA alone was insufficient for proper neonatal development at the low temperature. The growth of offspring from mothers raised at 20 °C without EPA supplementation was very low, indicating that the negative effects of EPA deficiency can be carried on to the next generation. 5. The fatty acid composition of Daphnia sp. in published field studies shows increasing proportions of saturated fatty acids with increasing environmental temperature, whereas ω3 PUFAs and EPA show no clear pattern, suggesting that variations in dietary PUFA may mask temperature‐dependent adjustments in ω3 PUFA concentrations of cladocerans in nature.  相似文献   

7.
A subject's baseline FA composition may influence the ability of dietary highly unsaturated omega-3 FAs (n3-HUFA) to change circulating profiles of esterified FAs and their oxygenated metabolites. This study evaluates the influence of basal n3-HUFA and n3-oxylipin status on the magnitude of response to n3-HUFA consumption. Blood was collected from fasting subjects (n = 30) before and after treatment (4 weeks; 11 ± 2 mg/kg/day n3-HUFA ethyl esters). Esterified FAs were quantified in erythrocytes, platelets, and plasma by GC-MS. Esterified oxylipins were quantified in plasma by LC-MS/MS. Treatment with n3-HUFAs increased n3-HUFAs and decreased n6-HUFAs in all reservoirs and increased plasma n3-oxylipins without significantly changing n6-oxylipin concentrations. As subject basal n3-HUFAs increased, treatment-associated changes decreased, and this behavior was reflected in the percentage of 20:5n3 + 22:6n3 in red blood cell membrane FAs (i.e., the omega-3 index). To maintain an omega-3 index of 8% and thus reduce cardiovascular disease risk, our analyses suggest a maintenance dose of 7 mg/kg/day n3-HUFA ethyl esters for a 70-kg individual. These results suggest that the basal n3 index may have clinical utility to establish efficacious therapeutic experimental feeding regimens and to evaluate the USDA Dietary Guidelines recommendations for n3-HUFA consumption.  相似文献   

8.
Several sources of information suggest that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of approximately 1 whereas in Western diets the ratio is 15/1-16.7/1. Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today's Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a lower omega-6/omega-3 ratio), exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2-3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. These studies indicate that the optimal ratio may vary with the disease under consideration. This is consistent with the fact that chronic diseases are multigenic and multifactorial. Therefore, it is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the chronic diseases of high prevalence in Western societies, as well as in the developing countries.  相似文献   

9.
Daphnia magna is known to switch between sexual and asexual reproduction depending on the environment. It reproduces asexually when in an optimal environment for food, photoperiod, and population density. Once the environment declines, it changes reproductive strategy from asexual to sexual reproduction. However, the molecular bases of environmental sex determination are largely unknown. To understand the molecular mechanisms of environmental sex determination in Daphnia, it is essential to isolate the genes related to sex determination. As DM-domain genes are well known as sex-related genes, we aimed to identify DM-domain genes from Daphnia. Based on degenerate PCR of conserved DM domains using Daphnia cDNA, we identified three DM-domain genes that corresponded to DMRT11E, DMRT93B, and DMRT99B of Drosophila melanogaster. Quantitative gene expression analysis in gonads revealed that DMRT93B was expressed only in the testis. This finding contributes to an improved understanding of the switching mechanism from an asexual to a sexual life cycle depending on the environment.  相似文献   

10.
BackgroundDietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations.ObjectiveTo evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache.DesignSecondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3–L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet.ResultsCompared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3–L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations.ConclusionDietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA.  相似文献   

11.
12.
These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C1-BODIPY-C12 in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis–Menten kinetics; the apparent efficiency (kcat/KT) of this process increases over 2-fold (2.1 × 106–4.5 × 106 s−1 M−1) upon adipocyte differentiation. The Vmax values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 × 106 s−1 M−1 versus 1.5 × 106 s−1 M−1). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving Vmax values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The same cells had reduced efficiency for fatty acid transport (ranging from 0.82 × 106 s−1 M−1 to 1.35 × 106 s−1 M−1).  相似文献   

13.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35?±?0.5 mg g?1 cell dry weight) and EPA (0.12?±?0.04 mg g?1 cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.  相似文献   

14.
Inactivation of iscS encoding cysteine desulfurase results in a slow growth phenotype associated with the deficiency of iron-sulfur clusters, thiamine, NAD, and tRNA thionucleosides in Escherichia coli. However, the other roles of iscSin vivo are unknown. By using differential screening strategies, we identified 2 pyrimidine salvage enzymes, namely, uridine phosphorylase and cytidine deaminase, which were down-regulated in the iscS mutant. Both enzymes are positively regulated by the cAMP receptor protein (CRP). We also identified a novel protein complex, namely, YeiT-YeiA, whose expression level was decreased in the iscS mutant. The recombinant YeiT-YeiA complex exhibited NADH-dependent dihydropyrimidine dehydrogenase activity, indicating its role in pyrimidine metabolism. The presence of a CRP-binding consensus sequence on the 5′-upstream of the yeiT-YeiA gene suggests its regulation by CRP. These results provide a clue to the possible role of iscS in pyrimidine metabolism by gene regulation.  相似文献   

15.
Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LC-PUFAs) are essential for the development and function of the human brain. They can be obtained directly from food, e.g., fish, or synthesized from precursor molecules found in vegetable oils. To determine the importance of genetic variability to fatty-acid biosynthesis, we studied FADS1 and FADS2, which encode rate-limiting enzymes for fatty-acid conversion. We performed genome-wide genotyping (n = 5,652 individuals) and targeted resequencing (n = 960 individuals) of the FADS region in five European population cohorts. We also analyzed available genomic data from human populations, archaic hominins, and more distant primates. Our results show that present-day humans have two common FADS haplotypes-defined by 28 closely linked SNPs across 38.9 kb-that differ dramatically in their ability to generate LC-PUFAs. No independent effects on FADS activity were seen for rare SNPs detected by targeted resequencing. The more efficient, evolutionarily derived haplotype appeared after the lineage split leading to modern humans and Neanderthals and shows evidence of positive selection. This human-specific haplotype increases the efficiency of synthesizing essential long-chain fatty acids from precursors and thereby might have provided an advantage in environments with limited access to dietary LC-PUFAs. In the modern world, this haplotype has been associated with lifestyle-related diseases, such as coronary artery disease.  相似文献   

16.
We have previously reported that essential fatty acid deficiency (EFAD) during suckling in mice resulted in an adult lean phenotype and a resistance to diet-induced obesity. We now hypothesized that postnatal EFAD would cause long-term effects on lipid metabolism. C57BL/6 mice were fed an EFAD or a control diet from the 16th day of gestation and throughout lactation. The pups were weaned to standard diet (STD) and at 15 weeks of age given either high fat diet (HFD) or STD. Lipoprotein profiles, hepatic lipids, fatty acids and mRNA expression were analyzed in 3-week-old and 25-week-old offspring. At weaning, the EFAD pups had higher cholesterol levels in both plasma and liver and 6-fold higher concentrations of hepatic cholesterol esters than control pups. Adult EFAD offspring had higher levels of hepatic cholesterol and linoleic acid, but lower levels of dihomo-γ-linolenic acid and Pparg mRNA expression in the liver. In addition, HFD fed EFAD offspring had lower plasma total cholesterol, lower hepatic triglycerides and lower liver weight compared to controls fed HFD. In conclusion, early postnatal EFAD resulted in short-term alterations with increased hepatic cholesterol accumulation and long-term protection against diet-induced liver steatosis and hypercholesterolemia.  相似文献   

17.
BACKGROUND: Benefits of omega-3 fatty acids in perinatal women are well documented, although fish intake has declined among perinatal women. OBJECTIVE: To determine the tolerability of omega-3 fatty acid supplementation in perinatal women. DESIGN: Pregnant and postpartum women with major depressive disorder (MDD) entered an 8-week double-blind, placebo-controlled trial of omega-3 fatty acids. Four capsules provided 1.84 g/day of eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA), or matching placebo (corn oil with 1% fish oil to maintain blind). Tolerability was assessed by clinician interview biweekly. RESULTS: Fifty-nine women enrolled. Thirteen (22%) reported mainly transient side effects including dizziness, diarrhea, nausea, burping, heartburn/reflux, difficulty swallowing capsules, unpleasant breath/bad taste or feeling tired. The most common were unpleasant breath/bad taste and heartburn/reflux. Six reporting side effects received omega-3 fatty acids; seven received placebo. Neither pregnant nor postpartum women discontinued due to intolerability. CONCLUSIONS: Omega-3 fatty acid supplements were well tolerated by perinatal women.  相似文献   

18.
  • 1.1. Daphnia magna were exposed for 24 hr to 14C-labelled pentachlorophenol (PCP) at an initial concentration of 20μg/l in the incubation water. Occurrence of free PCP and its metabolites were measured both from the animals and the water.
  • 2.2. Hydrophilic metabolites excreted into water were analysed, after acid or enzymatic hydrolyses, with a liquid-liquid extraction and TLC.
  • 3.3. PCP was metabolized and excreted, perhaps solely, via the sulphate conjugation. The average excretion rate, 2.65nmol/g/hr, accounted for 35% of the absorption rate measured at the start of exposure.
  • 4.4. Neonate daphnids had an equal ability to metabolize PCP as the older animals. Bioconcentration in young animals was, however, only 23% of that in adult ones.
  • 5.5. Effect of naturally humic water on metabolization and excretion of PCP was negligible.
  相似文献   

19.
This study was carried out on 24 gilts (♀ Polish Large White × ♂ Danish Landrace) grown with body weight (BW) of 60 to 105 kg. The pigs were fed diets designed on the basis of a standard diet (appropriate for age and BW of pigs) where a part of the energy content was replaced by different fat supplements: linseed oil in Diet L, rapeseed oil in Diet R and fish oil in Diet F (6 gilts per dietary treatment). The fat supplements were sources of specific fatty acids (FA): in Diet L α-linolenic acid (C18:3 n?3, ALA); in Diet R linoleic acid (C18:2 n?6, LA) and in Diet F eicosapentaenoic acid (C20:5 n?3, EPA), docosapentaenoic acid (C22:5 n?3, DPA) and docosahexaenoic acid (C22:6 n?3, DHA). The protein, fat and total FA contents in the body did not differ among groups of pigs. The enhanced total intake of LA and ALA by pigs caused an increased deposition of these FA in the body (p < 0.01) and an increased potential body pool of these acids for further metabolism/conversions. The conversion efficiency of LA and ALA from the feed to the pig’s body differed among groups (p < 0.01) and ranged from 64.4% to 67.2% and from 69.4% to 81.7%, respectively. In Groups L and R, the level of de novo synthesis of long-chain polyunsaturated FA was higher than in Group F. From the results, it can be concluded that the efficiency of deposition is greater for omega-3 FA than for omega-6 FA and depends on their dietary amount. The level of LA and ALA intake influences not only their deposition in the body but also the end products of the omega-3 and omega-6 pathways.  相似文献   

20.
Polyunsaturated fatty acids (PUFAs) may favorably influence the risk and clinical course of diabetes mellitus (DM). In particular, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) alleviate oxidative injury and insulin resistance characteristic of DM. Uncertainty still remains, however, as to the composition and proportions of blood PUFAs in relation to fasting blood glucose levels. This study, thus, aims to examine the patterns of blood PUFA indices in normoglycemic (NG) and hyperglycemic (HG) Saudi subjects. Age, gender, FA profiles, and laboratory records of 143 subjects collected from September 2014 to March 2018 were retrospectively analyzed. Means, prevalence rates, associations, risk measures, and the diagnostic accuracy of PUFAs were determined. HG subjects had significantly lower AA (0.70%, 95% CI: 0.59–0.80% vs 0.46%, 95% CI: 0.38–0.53%) and higher EPA/AA ratio (0.36, 95% CI: 0.30–0.42 vs 0.69, 95% CI: 0.61–0.77). Gender-wise comparisons revealed that ?-6/?-3 ratio was the only PUFA index significantly elevated in HG males (0.36, 95% CI: 0.26–0.45 vs 5.68, 95% CI: 4.98–6.38) while both DHA (2.91%, 95% CI: 2.54–3.29% vs 3.37%, 95% CI: 3.13–3.60%) and ?-3 index (3.1%, 95% CI: 2.70–3.49% vs 3.63%, 95% CI: 3.38–3.88%) were significantly elevated in HG females. Furthermore, reduced AA and elevated EPA/AA ratio were more prevalent in HG subjects (26.53 vs 28.72 and 30.61 vs 38.29, respectively) and exhibited the highest diagnostic accuracy for HG among all PUFA indices. Altogether, our study revealed that distinct, gender-specific blood PUFA indices are differentially regulated in HG subjects which may be valuable for DM management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号