首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Clinical studies have demonstrated a link between the eosinophil-selective chemokines, eotaxins (eotaxin-1/CCL11 and eotaxin-2/CCL24), eosinophils, and the inflammatory bowel diseases, Crohn's disease and ulcerative colitis (UC). However, the cellular source and individual contribution of the eotaxins to colonic eosinophilic accumulation in inflammatory bowel diseases remain unclear. In this study we demonstrate, by gene array and quantitative PCR, elevated levels of eotaxin-1 mRNA in the rectosigmoid colon of pediatric UC patients. We show that elevated levels of eotaxin-1 mRNA positively correlated with rectosigmoid eosinophil numbers. Further, colonic eosinophils appeared to be degranulating, and the levels positively correlated with disease severity. Using the dextran sodium sulfate (DSS)-induced intestinal epithelial injury model, we show that DSS treatment of mice strongly induced colonic eotaxin-1 and eotaxin-2 expression and eosinophil levels. Analysis of eosinophil-deficient mice defined an effector role for eosinophils in disease pathology. DSS treatment of eotaxin-2(-/-) and eotaxin-1/2(-/-) mice demonstrated that eosinophil recruitment was dependent on eotaxin-1. In situ and immunofluorescence analysis-identified eotaxin-1 expression was restricted to intestinal F4/80(+)CD11b(+) macrophages in DSS-induced epithelial injury and to CD68(+) intestinal macrophages and the basolateral compartment of intestinal epithelial cells in pediatric UC. These data demonstrate that intestinal macrophage and epithelial cell-derived eotaxin-1 plays a critical role in the regulation of eosinophil recruitment in colonic eosinophilic disease such as pediatric UC and provides a basis for targeting the eosinophil/eotaxin-1 axis in UC.  相似文献   

2.
3.
Inflammatory bowel disease (IBD), consisting of Crohn's disease and ulcerative colitis (UC), results in substantial morbidity and is difficult to treat. New strategies for adjunct therapies are needed. One candidate is the semi-essential amino acid, L-arginine (L-Arg), a complementary medicine purported to be an enhancer of immunity and vitality in the lay media. Using dextran sulfate sodium (DSS) as a murine colonic injury and repair model with similarities to human UC, we assessed the effect of L-Arg, as DSS induced increases in colonic expression of the y(+) cationic amino acid transporter 2 (CAT2) and L-Arg uptake. L-Arg supplementation improved the clinical parameters of survival, body weight loss, and colon weight, and reduced colonic permeability and the number of myeloperoxidase-positive neutrophils in DSS colitis. Luminex-based multi-analyte profiling demonstrated that there was a marked reduction in proinflammatory cytokine and chemokine expression with L-Arg treatment. Genomic analysis by microarray demonstrated that DSS-treated mice supplemented with L-Arg clustered more closely with mice not exposed to DSS than to those receiving DSS alone, and revealed that multiple genes that were upregulated or downregulated with DSS alone exhibited normalization of expression with L-Arg supplementation. Additionally, L-Arg treatment of mice with DSS colitis resulted in increased ex vivo migration of colonic epithelial cells, suggestive of increased capacity for wound repair. Because CAT2 induction was sustained during L-Arg treatment and inducible nitric oxide (NO) synthase (iNOS) requires uptake of L-Arg for generation of NO, we tested the effect of L-Arg in iNOS(-/-) mice and found that its benefits in DSS colitis were eliminated. These preclinical studies indicate that L-Arg supplementation could be a potential therapy for IBD, and that one mechanism of action may be functional enhancement of iNOS activity.  相似文献   

4.
Epithelial neutrophil-activating peptide-78 (ENA-78), a member of the CXC chemokine subfamily, is induced by inflammatory cytokines in human colonic enterocyte cell lines and increased in the colon of patients with inflammatory bowel disease (IBD). Lipopolysaccharide-induced CXC-chemokine (LIX) was recently identified as the murine homolog of ENA-78. Here we show that, similar to ENA-78, inflammatory cytokine stimulation of a murine colonic epithelial cell line, MODE-K, results in increased LIX expression. Consistent with the expression pattern of ENA-78 in IBD, LIX expression is significantly increased in mice with colitis induced by the ingestion of dextran sodium sulfate (DSS). Treating mice with antisense oligonucleotides to LIX via rectal enema delivery before DSS treatment results in colonic enterocyte uptake and a significant reduction in neutrophil infiltration and severity of colitis. These findings indicate that LIX plays an integral role in the pathogenesis of DSS-induced colitis. Similarly, enterocyte-derived CXC chemokines may play a key role in regulating neutrophil recruitment and intestinal injury in IBD. The intracolonic administration of ENA-78 antisense oligonucleotides may be effective in treating distal ulcerative colitis in humans.  相似文献   

5.
Dendritic cells (DCs) are essential mediators of the host immune response to surrounding microbes. In this study, we investigate the role of DCs in the pathogenesis of a widely used colitis model, dextran sulfate sodium-induced colitis. The effect of dextran sulfate sodium on the production of proinflammatory cytokines and chemokines by bone marrow-derived DCs (BM-DCs) was analyzed. BM-DCs were adoptively transferred into C57BL/6 mice or DCs were ablated using transgenic CD11c-DTR/GFP mice before treatment with 5% dextran sulfate sodium in drinking water. We found that dextran sulfate sodium induced production of proinflammatory cytokines (IL-12 and TNF-alpha) and chemokines (KC, MIP-1alpha, MIP-2, and MCP-1) by DCs. Adoptive transfer of BM-DCs exacerbated dextran sulfate sodium colitis while ablation of DCs attenuated the colitis. We conclude that DCs are critical in the development of acute dextran sulfate sodium colitis and may serve a key role in immune balance of the gut mucosa.  相似文献   

6.
Dharmani P  Leung P  Chadee K 《PloS one》2011,6(9):e25058
The sequential events and the inflammatory mediators that characterize disease onset and progression of ulcerative colitis (UC) are not well known. In this study, we evaluated the early pathologic events in the pathogenesis of colonic ulcers in rats treated with dextran sodium sulfate (DSS). Following a lag phase, day 5 of DSS treatment was found clinically most critical as disease activity index (DAI) exhibited an exponential rise with severe weight loss and rectal bleeding. Surprisingly, on days 1-2, colonic TNF-α expression (70-80-fold) and tissue protein (50-fold) were increased, whereas IL-1β only increased on days 7-9 (60-90-fold). Days 3-6 of DSS treatment were characterized by a prominent down regulation in the expression of regulatory cytokines (40-fold for IL-10 and TGFβ) and mucin genes (15-18 fold for Muc2 and Muc3) concomitant with depletion of goblet cell and adherent mucin. Remarkably, treatment with TNF-α neutralizing antibody markedly altered DSS injury with reduced DAI, restoration of the adherent and goblet cell mucin and IL-1β and mucin gene expression. We conclude that early onset colitis is dependent on TNF-α that preceded depletion of adherent and goblet cell mucin prior to epithelial cell damage and these biomarkers can be used as therapeutic targets for UC.  相似文献   

7.
BackgroundAs a chronic inflammatory disease, ulcerative colitis (UC) is relevant to a rising risk of colorectal cancer. Dihydroberberine (DHBB), a natural occurring isoquinoline alkaloid with various bioactivities, was found in many plants including Coptis chinensis Franch. (Ranunculaceae), Phellodendron chinense Schneid. (Rutaceae), and Chelidonium majus L. (Papaveraceae). However, its protective effect on UC is sparsely dissected out.PurposeTo explore the protective role and underlying mechanism of DHBB on a model of colitis.MethodsAcute colitis model was established by gavage with 3% dextran sulfate sodium (DSS) for 8 days. Influence of DHBB on DSS-induced clinical symptoms and disease activity index (DAI) was monitored and analyzed. Pathological injury of colon tissues was examined by hematoxylin-eosin and Alcian blue staining. The expression of intestinal mucosal barrier function proteins, immune-inflammation related biomarkers and signal pathway key targets were determined by ELISA kit, Western blot, immunohistochemistry and qRT-PCR.ResultsDHBB treatment effectively alleviated DSS-induced UC by relieving clinical manifestations, DAI scores and pathological damage, which exerted similar beneficial effect to azathioprine (AZA), and better than berberine (BBR). In addition, DHBB significantly improved the gut barrier function through up-regulating the levels of tight junction proteins and mucins. Furthermore, DHBB dramatically ameliorated colonic immune-inflammation state, which was related to the decrease of colonic pro-inflammatory cytokines and immunoglobulin through blocking TLR4/MyD88/NF-κB signal pathway.ConclusionThese results demonstrated that DHBB exerted a significant protective effect on DSS-induced experimental UC, at least partly through suppressing immune-inflammatory response and maintaining gut barrier function.  相似文献   

8.
目的

研究靛蓝对葡聚糖硫酸钠(DSS)诱导的溃疡性结肠炎(UC)模型小鼠的干预作用,并分析对小鼠肠道菌群的影响。

方法

实验小鼠分为对照组、模型组、柳氮磺胺吡啶组(125 mg/kg)和靛蓝组(50 mg/kg),每组小鼠各9只。观察给药后小鼠体征并进行疾病活动指数(DAI)评分,通过苏木素―伊红(HE)染色观察小鼠结肠组织切片形态变化,ELISA法检测小鼠血清中IL-6、TNF-α、IL-1β、IL-8和IL-10水平;针对16S rRNA基因V4‒V5区进行高通量测序,分析小鼠肠道内容物的菌群变化。

结果

与模型组相比,靛蓝组小鼠DAI评分降低,病理切片结果显示靛蓝可改善UC小鼠结肠黏膜损伤,减少炎性细胞浸润,血清中促炎因子IL-6、IL-8、IL-1β和TNF-α水平显著降低(t = 4.377 0、5.374 0、12.140 0、5.508 0,P = 0.011 9、0.005 8、0.000 3、0.005 3),抑炎因子IL-10水平显著升高(t = 3.716 0,P = 0.020 5)。16S rRNA基因测序结果显示,模型组小鼠肠道菌群多样性降低,靛蓝组小鼠肠道菌群多样性升高。

结论

给予靛蓝干预后可有效缓解UC小鼠结肠炎症状,通过降低炎症因子水平和调节UC小鼠肠道菌群平衡达到治疗UC的效果。

  相似文献   

9.
陈蕾  林琳  陆宗海  李学良  张红杰 《生物磁学》2009,(13):2480-2483
目的:观察中性粒细胞弹性蛋白酶(NE)在葡聚糖硫酸钠(DSS)诱导的小鼠实验性结肠炎中的表达情况并探讨其表达的意义。方法:健康雄性BALB/c小鼠随机分为正常对照组、模型组。模型组小鼠予5%DSS溶液自由饮用制备小鼠急性实验性结肠炎模型,正常对照组小鼠予蒸馏水自由饮用。每日观察小鼠的一般状况及疾病活动指数(DAI)评分,于实验第5、9天分批处死小鼠,取小鼠结肠行组织学损伤评分;ELISA法检测小鼠血浆中性粒细胞弹性蛋白酶浓度;Western blot法检测远端结肠组织中NE蛋白的表达。结果:与正常对照组相比,模型组小鼠在实验第5天及第9天DAI评分显著升高(P〈0.001)、结肠组织学损伤评分明显升高(P〈0.01)、血浆NE浓度明显升高(P〈0.01)、远端结肠NE蛋白表达增加显著(P〈0.001)。在实验第5天及第9天,模型组小鼠DAI评分与组织学损伤评分呈显著正相关(P〈0.05),血浆中NE浓度及结肠中NE蛋白的表达与DAI评分、组织学评分均呈显著正相关(P〈0.05)。结论:NE在实验性结肠炎小鼠血浆及结肠组织中表达明显增加,且与疾病活动指数及组织学评分呈正相关,提示NE可能参与实验性结肠炎小鼠的发病。  相似文献   

10.

Aim

To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice.

Methods

Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage.

Results

The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model.

Conclusions

Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L. fermentum CCTCC M206110 proved to be effective at attenuating DSS-induced colitis. The potential probiotic effect of L. plantarum NCIMB8826 on UC has yet to be assessed.  相似文献   

11.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis. Previous studies have indicated that celastrol (CSR) has strong anti-inflammatory and immune-inhibitory effects. Here, we investigated the effects of CSR on colonic inflammation and mucosal immunity in an experimental colitis model, and addressed the mechanism by which CSR exerts the protective effects. We characterized the therapeutic effects and the potential mechanism of CSR on treating UC using histological staining, intestinal permeability assay, cytokine assay, flow cytometry, fecal microbiota transplantation (FMT), 16S rRNA sequencing, untargeted metabolomics, and cell differentiation. CSR administration significantly ameliorated the dextran sodium sulfate (DSS)-induced colitis in mice, which was evidenced by the recovered body weight and colon length as well as the decreased disease activity index (DAI) score and intestinal permeability. Meanwhile, CSR down-regulated the production of pro-inflammatory cytokines and up-regulated the amount of anti-inflammatory mediators at both mRNA and protein levels, and improved the balances of Treg/Th1 and Treg/Th17 to maintain the colonic immune homeostasis. Notably, all the therapeutic effects were exerted in a gut microbiota-dependent manner. Furthermore, CSR treatment increased the gut microbiota diversity and changed the compositions of the gut microbiota and metabolites, which is probably associated with the gut microbiota-mediated protective effects. In conclusion, this study provides the strong evidence that CSR may be a promising therapeutic drug for UC.  相似文献   

12.
目的 探讨幽门螺杆菌(H.pylori)感染对葡聚糖硫酸钠(DSS)诱导的小鼠溃疡性结肠炎(UC)的影响。 方法 80只雌性BALB/c小鼠随机分为空白对照组(CON组,n=20)和实验组(n=60),实验组制作DSS诱导UC模型,然后分组建立成为结肠炎组(CLi组)、H.pylori持续感染的结肠炎组(Hp组)和H.pylori根除的结肠炎组(Hp Era组),每组20小鼠。实验过程中观察小鼠一般情况和疾病活动指数(DAI);在第25天、45天时处死动物,分离外周血和结肠组织中单个核细胞,流式细胞仪检测其Th17/Treg细胞亚群变化。 结果 CLi组、Hp组、Hp Era组小鼠DAI评分显著高于CON组(均P结论 H.pylori感染使DSS结肠炎小鼠UC的Th17亚群比例降低、Foxp3+Treg细胞比例增加,这种变化似乎对DSS诱导的结肠炎具有保护作用。  相似文献   

13.
The pathogenesis of ulcerative colitis (UC) is unclear, but enhancement of disease activity by usage of nonsteroidal anti-inflammatory drugs suggests involvement of prostanoid in its pathophysiology. However, biological effect of prostaglandin (PG) D(2) on intestinal inflammation remains unknown. We investigated the expression of enzymes for PGD(2) synthesis, prostaglandin D synthase (PGDS), and its relation to the activity of colitis in UC patients. The role of lipocalin-type PGDS (L-PGDS) using a murine colitis model was also assessed. Tissue samples were obtained by colonic biopsies from patients with UC. Expression levels of mRNAs for L-PGDS and hematopoietic-type PGDS were investigated by quantitative RT-PCR. COX-2 and L-PGDS expression was investigated by immunohistochemistry. Localization of L-PGDS expression was also determined by in situ hybridization. In experimental study, mice were treated with dextran sodium sulfate in the drinking water to induce colitis. The degree of colonic inflammation was compared with L-PGDS(-/-) mice and control mice. The level of L-PGDS mRNA expression was increased in UC patients in parallel with disease activity. Colocalization of L-PGDS and cyclooxygenase (COX) 2 was observed in lamina proprial infiltrating cells and muscularis mucosa in UC patients. The level of hematopoietic PGDS mRNA expression did not differ from control mucosa. Dextran sodium sulfate treatment to L-PGDS(-/-) mice showed lower disease activity than control mice. We reported for the first time the presence of L-PGDS in the COX-2-expressing cells in the mucosa of active UC patients and that only L-PGDS increased with disease activity. An animal model study suggests that PGD(2) derived from L-PGDS-expressing cells plays proinflammatory roles in colitis.  相似文献   

14.
The generation of tissue eosinophilia is governed in part by chemokines; initial investigation has identified three chemokines in the human genome with eosinophil selectivity, referred to as eotaxin-1, -2, and -3. Elucidation of the role of these chemokines is dependent in part upon analysis of murine homologues; however, only one murine homologue, eotaxin-1, has been identified. We now report the characterization of the murine eotaxin-2 cDNA, gene and protein. The eotaxin-2 cDNA contains an open reading frame that encodes for a 119-amino acid protein. The mature protein, which is predicted to contain 93 amino acids, is most homologous to human eotaxin-2 (59.1% identity), but is only 38.9% identical with murine eotaxin-1. Northern blot analysis reveals three predominant mRNA species and highest constitutive expression in the jejunum and spleen. Additionally, allergen challenge in the lung with Aspergillus fumigatus or OVA revealed marked induction of eotaxin-2 mRNA. Furthermore, eotaxin-2 mRNA was strongly induced by both transgenic over-expression of IL-4 in the lung and administration of intranasal IL-4. Analysis of eotaxin-2 mRNA expression in mice transgenic for IL-4 but genetically deficient in STAT-6 revealed that the IL-4-induced expression was STAT-6 dependent. Recombinant eotaxin-2 protein induced dose-dependent chemotactic responses on murine eosinophils at concentrations between 1-1000 ng/ml, whereas no activity was displayed on murine macrophages or neutrophils. Functional analysis of recombinant protein variants revealed a critical role for the amino terminus. Thus, murine eotaxin-2 is a constitutively expressed eosinophil chemokine likely to be involved in homeostatic, allergen-induced, and IL-4-associated immune responses.  相似文献   

15.
To investigate the role of inhibitory natural killer receptors (iNKRs) in inflammatory bowel disease (IBD), we analyzed the expression of NKG2A, one of the iNKRs, on T cells in a mouse colitis model and human IBD. During the active phase of dextran sulfate sodium (DSS)-induced mouse colitis, the frequency of NKG2A+ T cells was significantly decreased in the peripheral blood, and increased in the intestine, suggesting the mobilization of this T cell subset to the sites of inflammation. Administration of anti-NKG2A antibody increased the number of inflammatory foci in DSS-induced colitis, suggesting the involvement of NKG2A+ T cells in this colitis model. In ulcerative colitis (UC) patients, the frequency of peripheral blood NKG2A+ T cells was significantly decreased, compared with Crohn's disease (CD) patients and healthy controls, regardless of clinical conditions such as treatment modalities and disease activity. Notably, in sharp contrast to the DSS-induced mouse colitis model, the frequency of NKG2A+ cells among intestinal T cells was also decreased in UC patients. These results suggest that inadequate local infiltration of NKG2A+ T cells may be involved in the pathogenesis of UC.  相似文献   

16.
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease. The receptor‐interacting protein kinase 3 (RIP3) was reported to be involved in many inflammatory disease. However, the mechanism of RIP3 in the pathogenesis of UC is still unclear. To investigate the effects and possible mechanism of RIP3 in UC pathogenesis, RIP3‐/‐ mice was used in dextran sulfate sodium (DSS)‐induced colitis model. It was found that by DSS‐induced colitis, RIP3‐/‐ mice showed significantly enhanced colitis symptoms, including increased weight loss, colon shortening, and colonic mucosa damage and severity, but decreased production of interleukin 6 and interleukin 1β. The results showed that RIP3 deficiency could not ameliorate but exacerbate the severity of colitis. On the mechanism, it was found that messenger RNA expressions of several repair‐associated cytokines including interleukin 6, interleukin 22, cyclooxygenase 2, epithelial growth factor receptor ligand Epiregulin and matrix metalloproteinase 10 were siginificant decreased in RIP3‐/‐ mice. Thus, RIP3‐/‐ mice exhibited an impaired tissue repair in response to DSS. In a conclusion, RIP3 deficiency exerted detrimental effects in DSS induced colitis partially because of the impaired repair‐associated cytokines expression.  相似文献   

17.
目的:溃疡性结肠炎病因和发病机制目前尚不明确,抗炎与促炎因子的失衡可能在UC的发生发展中起到一定的作用。卵泡抑素-1是一种具有广泛糖基化修饰的分泌糖蛋白,目前的研究倾向于是一种炎性蛋白。本研究检测溃疡性结肠炎小鼠模型结肠标本中FSTL1的表达,分析探讨FSTL1在溃疡性结肠炎发病的中的作用。方法:20只BALB/c小鼠均分为对照组、模型组。模型组予以4%DSS喂养一周,对照组予以普通饮水一周,监测小鼠疾病症状,对小鼠疾病活动指数DAI进行评分。观察FSTL1在结肠黏膜组织中的表达,检测结肠组织FSTL1蛋白及FSTL1 mRNA表达水平,对FSTL1表达与小鼠疾病活动指数DAI进行相关性分析。采用t检验及Pearson相关分析,进行统计分析。结果:HE染色显示模型组病变主要累及黏膜及黏膜下层,可见大量炎性细胞浸润,以中性粒细胞为主,部分表面上皮脱落,上皮内杯状细胞减少,隐窝破坏;FSTL1蛋白表达于肠黏膜腺体间质,模型组表达高于正常对照组,分别为(2.9±1.44)和(0.6±0.51),具有显著性差异,P0.0l;实验组结肠FSTL1 mRNA平均表达水平(1.57±0.23)较对照组(0.46±0.22)明显增加,(t=10.84,P0.05)。结肠组织FSTL1mRNA表达水平与小鼠DAI成正相关,相关系数为r=0.850,P0.05。结论:研究中发现溃疡性结肠炎小鼠模型中FSTL1表达较正常对照组明显升高,且与小鼠DAI成正相关。提示FSTL1可能与实验性结肠炎的发生发展有一定的相关性,可能可以作为预测溃疡性结肠炎活动度的新的炎性标记物应用。  相似文献   

18.
Some species of lactic acid bacteria have been shown to be beneficial in inflammatory bowel disease (IBD). In the present study, a strain of lactic acid bacterium (Lactobacillus paracasei LS2) was isolated from the Korean food, kimchi, and was shown to inhibit the development of experimental colitis induced by dextran sulfate sodium (DSS). To investigate the role of LS2 in IBD, mice were fed DSS in drinking water for seven days along with LS2 bacteria which were administered intragastrically to some of the mice, while phosphate-buffered saline (PBS) was administered to others (the controls). The administration of LS2 reduced body weight loss and increased survival, and disease activity indexes (DAI) and histological scores indicated that the severity of colitis was significantly reduced. The production of inflammatory cytokines and myeloperoxidase (MPO) activity also decreased. Flow cytometry analysis showed that the number of Th1 (IFN-γ) population cells was significantly reduced in the LS2-administered mice compared with the controls. The administration of LS2 induced the increase of CD4+FOXP3+ Treg cells, which are responsible for IL-10. Numbers of macrophages (CD11b+ F4/80+), and neutrophils (CD11b+ Gr-1+) among lamina propria lymphocytes (LPL) were also reduced. These results indicate that LS2 has an anti-inflammatory effect and ameliorates DSS-induced colitis.  相似文献   

19.
毛文浩  黄丽萍  马望  赵环  张腾飞 《中国微生态学杂志》2020,32(10):1123-1127, 1133
目的 以Escherichia coli Nissle 1917为基础建立一种与肠道菌群相关的新型白介素2(IL 2)递送方式,研究其对葡聚糖硫酸钠(DSS)诱导的实验性结肠炎的治疗作用。 方法 将小鼠随机分为4组(每组10只),以正常小鼠作为空白对照组,实验组小鼠用3%的DSS水诱导小鼠结肠炎模型,分别灌胃表达IL 2的菌株(E. coli 1917/IL 2)、空质粒转化的菌株(E. coli 1917/0)或PBS进行治疗5 d,定期评估各组小鼠的临床体征、疾病活动指数(DAI)、病理和免疫组织学变化。 结果 构建的益生工程菌E. coli 1917/IL 2可有效缓解DSS诱导的小鼠肠炎,小鼠DAI评分较低,体质量及结肠长度均高于对照组,肠黏膜组织中炎症细胞浸润较少。 结论 使用工程化益生大肠埃希菌编码免疫调节细胞因子的治疗策略为溃疡性结肠炎提供一种潜在的治疗方法。  相似文献   

20.
Doublecortin-like kinase 1 (Dclk1), a microtubule-associated kinase, marks the fifth lineage of intestinal epithelial cells called tuft cells that function as tumor stem cells in Apc mutant models of colon cancer. In order to determine the role of Dclk1 in dextran sulfate sodium (DSS) induced colonic inflammation both intestinal epithelial specific Dclk1 deficient (VillinCre;Dclk1f/f) and control (Dclk1f/f) mice were fed 3% DSS in drinking water for 9 days, allowed to recover for 2 days, and killed. The clinical and histological features of DSS-induced colitis were scored and immunohistochemical, gene expression, pro-inflammatory cytokines/chemokines, and immunoblotting analyses were used to examine epithelial barrier integrity, inflammation, and stem and tuft cell features. In DSS-induced colitis, VillinCre;Dclk1f/f mice demonstrated exacerbated injury including higher clinical colitis scores, increased epithelial barrier permeability, higher levels of pro-inflammatory cytokines and chemokines, decreased levels of Lgr5, and dysregulated Wnt/b-Catenin pathway genes. These results suggest that Dclk1 plays an important role in regulating colonic inflammatory response and colonic epithelial integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号