首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study set out to build a model identifying areas where a positive Net Present Value (NPV) could be obtained from date palm (Phoenix dactylifera) using CLIMEX and six parameters including (a) suitable soil taxonomy and physicochemical soil properties, (b) slopes of less than 10°, (c) land uses suitable for date palm cultivation, (d) availability of roads, (e) availability of water, and (f) low risk of the lethal disease caused by Fusarium oxysporum f. spp. in the years 2030, 2050, 2070, and 2100 in Iran. Here, we utilized the A2 scenario and two global climate models (GCMs): CSIRO-Mk3.0 (CS) and MIROC-H (MR). Economic feasibility was estimated based on the assumption that the decision to plant date palms by landholders is motivated by a desire to maximize their return to land. Our results indicate that only 5450 km2 of southern Iran will be highly profitable for cultivation of date palm, with NPV > 10,000, while profitable (with NPV between 4200 and 10,000) and moderately profitable (with NPV between 0 and 4200) areas would cover only 500 and 50 km2, respectively, in future. A comparison of mean outputs from the two chosen GCMs and those of the economic and CLIMEX output combination indicates that only about 0.01% of areas from both GCMs will be highly economically viable for cultivation of date palm. In this study we ensure that the predictions become robust, rather than producing hypothetical findings, limited purely to publication.  相似文献   

2.
Climate is changing and, as a consequence, some areas that are climatically suitable for date palm (Phoenix dactylifera L.) cultivation at the present time will become unsuitable in the future. In contrast, some areas that are unsuitable under the current climate will become suitable in the future. Consequently, countries that are dependent on date fruit export will experience economic decline, while other countries’ economies could improve. Knowledge of the likely potential distribution of this economically important crop under current and future climate scenarios will be useful in planning better strategies to manage such issues. This study used CLIMEX to estimate potential date palm distribution under current and future climate models by using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results indicate that in North Africa, many areas with a suitable climate for this species are projected to become climatically unsuitable by 2100. In North and South America, locations such as south-eastern Bolivia and northern Venezuela will become climatically more suitable. By 2070, Saudi Arabia, Iraq and western Iran are projected to have a reduction in climate suitability. The results indicate that cold and dry stresses will play an important role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations by identifying new areas in which to cultivate this economically important crop in the future and those areas that will need greater attention due to becoming marginal regions for continued date palm cultivation.  相似文献   

3.
Populations of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease of date palm, are derivatives of a single clonal lineage and exhibit very similar Fot 1 hybridization patterns. In order to develop a sensitive diagnostic tool for F. oxysporum f. sp. albedinis detection, we isolated several DNA clones containing a copy of the transposable element Fot 1 from a genomic library of the date palm pathogen. Regions flanking the insertion sites were sequenced, and these sequences were used to design PCR primers that amplify the DNA regions at several Fot 1 insertion sites. When tested on a large sample of Fusarium isolates, including 286 F. oxysporum f. sp. albedinis isolates, 17 other special forms, nonpathogenic F. oxysporum isolates from palm grove soils, and 8 other Fusarium species, the primer pair TL3-FOA28 allowed amplification of a 400-bp fragment found only in F. oxysporum f. sp. albedinis. Sequence analysis showed that one of the Fot 1 copies was truncated, lacking 182 bp at its 3′ terminus. The primer pair BI03-FOA1 amplified a 204-bp fragment which overlapped the Fot 1 truncated copy and its 3′ site of insertion in the F. oxysporum f. sp. albedinis genome and identified 95% of the isolates. The primer pairs BIO3-FOA1 and TL3-FOA28 used in PCR assays thus provide a useful diagnostic tool for F. oxysporum f. sp. albedinis isolates.  相似文献   

4.
The bayoud disease, vascular fusariosis of date palm tree (Phoenix dactylifera L.), is caused by the pathogenic fungus Fusarium oxysporum f. sp. albedinis. The characteristic symptoms of the bayoud disease were elicited on detached leaves of F. oxysporum f. sp. albedinis‐susceptible cultivars of date palm trees, which were treated either with the FII (F. oxysporum f. sp. albedinis) fraction purified from the organic extracts of a F. oxysporum f. sp. albedinis liquid culture, or with a solution of fusaric acid. Enniatins, which are secreted by several Fusarium species, were tested at different concentrations and were not capable of inducing symptoms on such detached leaves. The FII (F. oxysporum f. sp. albedinis) fraction was unable to induce necrosis of potato slices, which indicates that it does not contain significant amounts of enniatins. The high‐performance liquid chromatography (HPLC) profiles of the FII (F. oxysporum f. sp. albedinis) fraction showed toxic peaks different from fusaric acid. A fraction, named FII (AZ4), was obtained from culture filtrates of a saprophytic Fusarium strain maintained in the same cultural conditions as for the F. oxysporum f. sp. albedinis. The HPLC profile of the FII (AZ4) fraction did not show the characteristic phytotoxic peaks present in the FII (F. oxysporum f. sp. albedinis) fraction. This finding well agrees with the fact that the FII (AZ4) fraction is not toxic to detached date palm leaves. Moreover, the HPLC profiles of FII fractions obtained from other special forms of F. oxysporum are different the FII (F. oxysporum f. sp. albedinis) profile. The phytotoxic compounds purified from the FII (F. oxysporum f. sp. albedinis) fraction are probably new molecules that may help in understanding the pathogenesis of bayoud disease.  相似文献   

5.
Pathogenicity tests with Fusarium oxysporum isolated form Malaysian oil palm were made with oil palms seedlings raised form Malaysian seed as well s with wilt-susceptible seedlings gown from African seed. Oil palm seedlings grown form Malaysian seed were also inoculated with African isolates of F. oxysporum f. sp. elaeidis and F. oxysporum var. redolens. The experiments were made under normal soil moisture conditions and under water stress. F. oxysporum f. sp. elaeidis isolates form Africa were pathogenic to oil palm seedlings from Malaysian seeds but the Malaysian F oxysporum isolates were non-pathogenic to plams grown from Malaysian seed or the wilt-susceptible palms from African seed. Seedlings from Malaysian seed proved to be highly susceptible to the vascular wilt disease caused by F. oxysporum f. sp. elaeidis as 75–90% of the palms were infected. The susceptibility of the palms from Malaysian seed varied with different African isolates tested. The Yaligimba isolate from Zaire which was found to be F. oxysporum var. redolens was the most virulent. Disease was more severe when oil palm seedlings were subjected to a period of water stress. The incidence of death in the seedlings under stress conditions was 45% as compared with only 15% for palms grown under normal conditions.  相似文献   

6.
杨蕾  杨立  李婧昕  张超  霍兆敏  栾晓峰 《生态学报》2019,39(3):1082-1094
气候变化广泛影响着物种多样性及其分布变迁。优化模型模拟结果,获取气候变化影响下的优先保护区域将为制定应对气候变化的物种保护政策或行动提供理论依据,提升保护绩效。选取东北地区五种代表性动物,包括黑熊(Ursus thibetanus)、驼鹿(Alces alces)、水獭(Lutra lutra)、紫貂(Martes zibellina)及黑嘴松鸡(Tetrao parvirostris);结合最大熵模型(Maxent)模拟在不同RCP情景下未来3个年代(2030s,2050s,2070s)的物种潜在栖息地。根据九个常用气候模式的评价结果,获取东北地区合适的气候模式,了解气候变化对物种潜在栖息地的影响,同时开展物种保护规划,识别保护空缺,为应对气候变化、保持生物多样性提供支持。结果显示,在气候变化背景下物种潜在栖息地面积整体呈现下降趋势,但不同气候模式之间存在差异;评价结果推荐CCSM4、Nor ESM1-M、Had GEM2-AO及GFDL-CM3气候模式,推荐在东北地区使用以上气候模式进行物种未来潜在分布的研究。5个物种潜在栖息地平均面积变化率分别为-62.16%,-73.93%,-78.46%(2030s,2050s,2070s)。综合5个重点保护物种的保护优先区,大兴安岭的呼中、汗马与额尔古纳国家级自然保护区,延边地区的天佛指山、老爷岭东北虎、珲春东北虎与汪清原麝国家级自然保护区,长白山国家级自然保护区是气候变化下物种保护的热点区域。  相似文献   

7.
Broadacre livestock production is a major but highly diverse component of agriculture in Australia that will be significantly exposed to predicted changes in climate over coming decades. We used the GRAZPLAN simulation models to assess the impacts of climate change under the SRES A2 scenario across southern Australia. Climate change impacts were examined across space (25 representative locations) and time (1970–99, 2030, 2050 and 2070 climate) for each of five livestock enterprises. Climate projection uncertainty was considered by analysing projections from four global circulation models (GCMs). Livestock production scenarios were compared at their profit‐maximizing stocking rate, constrained to ensure that risks of soil erosion were acceptable. Impacts on net primary productivity (ANPP) varied widely between GCM projections; the average declines from historical climate were 9% in 2030, 7% in 2050 and 14% in 2070. Declines in ANPP were larger at lower‐rainfall locations. Sensitivity of ANPP to changes in rainfall ranged from 0.4 to 1.7, to temperature increase from ?0.15 to +0.07 °C?1 and to CO2 increase from 0.11 to 0.32. At most locations the dry summer period lengthened, exacerbating the greater erosion risk due to lower ANPP. Transpiration efficiency of pastures increased by 6–25%, but the proportion of ANPP that could safely be consumed by livestock fell sharply so that operating profit (at constant prices) fell by an average of 27% in 2030, 32% in 2050 and 48% in 2070. This amplification of ANPP reductions into larger profitability declines is likely to generalize to other extensive livestock systems. Profit declines were most marked at drier locations, with operating losses expected at 9 of the 25 locations by 2070. Differences between livestock enterprises were smaller than differences between locations and dates. Future research into climate change impacts on Australian livestock production needs to emphasise the dry margin of the cereal‐livestock zone.  相似文献   

8.
Ditylenchus dipsaci and Fusarium oxysporum f. sp. medicaginis synergistically affected the mortality and plant growth of Ranger alfalfa, a cultivar susceptible to stem nematode and Fusarium wilt. The nematode-fungus relationship had an additive effect on mortality and plant growth of Lahontan (nematode resistant and Fusarium wilt susceptible) and of Moapa 69 (nematode susceptible and Fusarium wilt resistant). Mortality rates were 13, 16, 46, and 49% for Ranger; 4, 18, 26, and 28% for Lahontan; and 19, 10, 32, and 30% for Moapa 69 inoculated with D. dipsaci, F. oxysporum f. sp. medicaginis, and simultaneously and sequentially with D. dipsaci and F. oxysporum f. sp. medicaginis, respectively. Shoot weights as a percentage of uninoculated controls for the same treatments were 52, 84, 26, and 28%, for Ranger; 74, 86, 64, and 64% for Lahontan; and 50, 95, 44, and 39% for Moapa 69. Plant growth suppression was related to vascular bundle infection and discoloration of alfalfa root tissue. Disease severity and plant growth of alfalfa did not differ with simultaneous or sequential inoculations of the two pathogens. Fusarium oxysporum f. sp. medicaginis affected alfalfa growth but not nematode reproduction.  相似文献   

9.
Defence reactions of palm trees to Fusarium oxysporum f. sp. elaeidis (Schlecht) Toovey Cross protection and stimulation of inhibitory substances In palm tree genetic characters of tolerance to Fusarium oxysporum f. sp. elaeidis are correlated with synthesis of fungal inhibitors in infected tissues. Individual variation of synthesis level is also observed among plants of a same line. Defence reactions are triggered by pre-inoculation of an avirulent strain of Fusarium oxysporum. Similar results are obtained by application of analogs of fungal elicitors like arachidonic acid. Quite the contrary, treatment of plants with a competitive inhibitor of PAL downs natural barriers and in a same way the effects of cross protection and arachidonic treatment. Seven phenolic compounds, mainly benzoic acid derivatives, inhibit in vitro the growth of pathogen like spores germination. The variability of the host reaction and its stimulation by elicitors could be used to improve the resistance.  相似文献   

10.
Effect of caffeoylshikimic acid of date palm roots on activity and production of Fusarium oxysporum f. sp. albedinis cell wall‐degrading enzymes The caffeoylshikimic acid (CSA), a major phenolic compound of date palm roots, represents one of the resistance factors of the host to Fusarium oxysporum f. sp. albedinis. The CSA was tested at various concentrations (0,25 to 3 µ mol/ml) on the activity and the production of F. oxysporum f. sp. albediniscell wall‐degrading enzymes (CWDE): proteases, cellulases, pectinemethyl‐esterases (PME), polygalacturonases (PG) and polygalacturonate trans‐eliminases (PGTE). The results obtained show that CSA had very little effect on the activity of the various enzymes although it greatly reduced their production. The mycelial growth was also affected by CSA, but this does not explain why only the production of CWDE was noticeably reduced. In order to explain this differential effect of CSA on the activity and production of CWDE, in one group of experiments the effects of the products of hydrolysis of CSA (caffeic acid and shikimic acid) was tested and in another, the effect of the products of CSA (quinones) obtained by tyrosinase oxidation was investigated. The results obtained show that the shikimic acid did not have a significant effect on the activity of the CWDE but presented a weak inhibition of their production.The caffeic acid showed a larger inhibition of the activity of the various CWDE that was more than that of CSA and its inhibiting effect appeared to be more important during their production. The oxidation of CSA by tyrosinase was accompanied by a greater inhibition of the activity of the various CWDE. This inhibition was appreciable in comparison with that observed due to the effect of non‐oxidized CSA on CWDE production. In the same way, oxidation of caffeic acid provoked a greater inhibiting effect on the activity of CWDE than unoxidized caffeic acid. These results suggests that CSA generates products of hydrolysis (in particular caffeic acid) and products of oxidation (quinones) which inhibit the activity of the proteolytic, cellulolytic and pectinolytic enzymes produced by F. oxysporum f. sp. albedinis in the culture medium.  相似文献   

11.
Bayoud, a vascular wilt of date palm caused by Fusarium oxysporum f. sp. albedinis (Foa), is the most devastating disease in palm groves of north Africa. Although Foa is able to induce resistance mechanisms in its host plant, no data are available on the early responses of the root cells. Fusaric acid (FA) is the main toxin found in culture filtrates from Foa aggressive strains. This phytotoxin induces modifications of membrane permeability or membrane potential in various cell types and could thus be involved in the early steps of signal exchange between the pathogen and the plant. We showed an early differential behaviour of the disease‐resistant and ‐susceptible cultivars from date palm when challenged by FA. This response could be due to a differential sensitivity of H+‐ATPases to FA.  相似文献   

12.

Background

Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races.

Methodology

We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy.

Findings

The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic.

Conclusions

The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.  相似文献   

13.
A total of 250 endophytic fungal isolates, representing 30 morphotaxa, were isolated and characterised, they were collected from the different living symptomless parts of date palm trees of orchards of six Egyptian governorates. Colonisation was greater in samples from the midrib than in those from laminar tissue and slightly greater at the tip of the lamina compared with the base of the leaf. Acremonium spp. were frequently isolated as date palm root endophytes. Acremonium isolates were screened in Petri dishes to select the highest antagonistic one against an Algerian isolate of Fusarium oxysporum f.sp. albedinis. Two-week-old axenically reared date palm seedlings grown in Petri dishes were directly injected with spore suspension (1.5?×?107 spores/ml) of a pure culture of the virulent antagonistic isolate of Acremonium sp. One week after endophytic colonisation, date palm seedlings were then challenged with the pathogen, Fusarium albedinis. The challenged seedlings exhibited a significant reduction in wilt symptom percentage (by 87.0%), while the seedlings exposed to Fusarial toxin without pathogen exhibited the wilt disease symptoms. This indicates that the endophyte ably depresses any toxic action of F. albedinis. The endophytic fungus was recovered from sites distant from the point of inoculation after six?months from the application, indicating that the Acremonium sp. has the potential to move throughout the tissue plant, even the end time of trial. The Acremonium mode of action, as a biocontrol agent, was discussed.  相似文献   

14.
《Biological Wastes》1989,27(4):271-279
The role of microbial flora in the ability shown by poplar bark compost to combat the carnation phytopathogen Fusarium oxysporum f.sp. dianthi was investigated. Compost was divided into two parts, one sterilized and the other not, and was added to two different types of soil naturally infested with Fusarium oxysporum f. sp. dianthi. Experiments were carried out in greenhouse benches. At 15-day intervals the main microbial groups present in the soil were analysed and visual inspections were carried out to evaluate the mortality of the plants. Protection against Fusarium oxysporum f. sp. dianthi due to the compost added was found in both soil types, and the protection was more marked in the case of sterile compost. This difference in protection is due to a different growth rate of the soil zymogeneous fraction, a consequence of the different amounts of easily assimilable organic matter contained in the two types of compost.  相似文献   

15.
Fusarium oxysporum f. sp. lycopersici Snyder & Hans. (FOL) is a major soil-borne pathogen and the causal agent of Fusarium wilt of tomato, resulting in significant production yield losses. Resistant cultivars have become the most effective method for controlling this fungal disease, and the most important resistance locus to F. oxysporum f. sp. lycopersici in tomato is I2, conferring resistance to race 2 of the pathogen, and widely used in breeding programs. Although this locus was cloned, a robust codominant DNA marker for the I2 locus is not available to date. The development of such a marker has been hindered by the presence of seven homologous sequences at this locus that tend to amplify, and by the absence of information about the structure of the recessive I2 locus. We performed a comparative analysis of the I2 locus nucleotide sequences of tomato genotypes resistant and susceptible to Fusarium wilt. We developed a breeder-friendly functional codominant cleaved amplified polymorphic sequence marker of I2 based on this analysis that can be used in tomato breeding programs for resistance to FOL race 2.  相似文献   

16.
Pretreatment of date palm seedlings with an hypoaggressive Fusarium isolate (AHD) protected them partially from further infection by Fusarium oxysporum f.sp. albedinis (Foa), the Bayoud disease pathogen. No mortality occurred during 2–3 months of incubation in plants pretreated with AHD, as opposed to aggressive isolate (ZAG) inoculated controls where up to 100% mortality was observed 15–30 days after inoculation. Such protection involved biochemical interactions between the host plant and AHD since no direct competition or antagonism was revealed between AHD and ZAG. The examination of the accumulation of phenolics and peroxidase activity, two parameters previously reported to be involved in date palm resistance to Foa, indicated that the response to AHD was correlated with the ability of pretreated date palm tissues to establish a faster defence response in the roots of both susceptible and resistant cultivars. Plants pretreated with AHD accumulated higher amounts of phenolics, mainly non‐constitutive hydroxycinnamic acid derivatives, which play a crucial role in date palm defence against Foa, as previously described by our group. These compounds were accumulated along with the constitutive caffeoylshikimic acids. A faster induction of peroxidase activity in response to Foa was also recorded in plants pretreated with AHD. Given the multi‐component nature of these induced responses, AHD could be part of integrated disease management strategies for a sustainable control of the palm tree Bayoud disease.  相似文献   

17.
Twenty-one isolates of microorganisms, including Bacillus spp., Rhizobium spp., Ulocladium atrum, Candida guilliermondii, Pseudomonas sp., Rahnella aquatilis and other bacteria not yet identified, were tested to determine their effects on the mycelial growth and the sporulation of Fusarium oxysporum f.sp. albedinis (Foa), the causal agent of bayoud on date palm. The potential of these antagonists in the induction of defense reactions in date palm seedlings was also studied. Four bacteria, B. pumilus W1, R. aquatilis W2, B. cereus X16 and n.d. S1, have exhibited a high inhibition toward mycelial growth of Foa (70–77%), and its sporulation (80–95% of the control). Moreover, cytological alterations have been detected in the Foa mycelium grown in the inhibition zone. Application of these antagonists into date palm seedlings has led to trigger defense reactions with an accumulation of non-constitutive hydroxycinnamic acid derivatives, such as the sinapic derivative I2, known to play a crucial role in resistance of date palm to Foa. This reaction was more pronounced in resistant cultivar (BSTN) than in susceptible (JHL). The combined effects of direct and indirect actions of Foa antagonists are discussed in the hope of providing a biocontrol strategy against bayoud.  相似文献   

18.
Effect of precolonization of banana cv Neeypovan roots with Pseudomonas fluorescens on infection with Fusarium oxysporum f.sp. cubense was studied. Under in vitro conditions Pseudomonas fluorescens clearly inhibited Fusarium oxysporum f.sp. cubense. Fluorescein isothiocyanate-tagged antibodies raised in a rabbit system for Pseudomonas fluorescens and Fusarium oxysporum f.sp. cubense separately were used to study the spread of both organisms in banana root. It was observed that precolonization with Pseudomonas fluorescens could reduce Fusarium oxysporum f.sp. cubense colonization by 72%, and also correlated with a number of structural changes in the cortical cells, mainly with densely stained amorphous material and polymorphic wall thickenings as revealed by light and electron microscopic studies. Massive depositions of unusual structures at sites of fungal entry was also noticed, which clearly indicated that bacterized root cells were signalled to mobilize a number of defence structures for preventing the spread of pathogen in the tissue. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
《Biological Control》2010,52(3):480-486
The potential of the biological control fungus Penicillium oxalicum to suppress wilt caused by Fusarium oxysporum f. sp. melonis and F. oxysporum f. sp. niveum on melon and watermelon, respectively, was tested under different growth conditions. The area under disease progress curve of F. oxysporum f. sp. melonis infected melon plants was significantly reduced in growth chamber and field experiments. In glasshouse experiments, it was necessary to apply P. oxalicum and dazomet in order to reduce Fusarium wilt severity in melons caused by F. oxysporum f. sp. melonis. For watermelons, we found that P. oxalicum alone reduced the area under the disease progress curve by 58% in the growth chamber experiments and 54% in the glasshouse experiments. From these results, we suggested that P. oxalicum may be effective for the management of Fusarium wilt in melon and watermelon plants.  相似文献   

20.
Abstract

In the present study the effect of flavonoid compounds on the germination and fungal growth of the soil-borne tomato pathogen Fusarium oxysporum f. sp. lycopersici was studied. Out of 12 flavonoid compounds only myricetin and luteolin exhibited a low stimulating activity on microconidia germination of Fusarium oxysporum f. sp. lycopersici, whereas the other flavonoids tested were inactive when applied at five different concentrations. In our study the tested flavonoids affect fungal growth differently to microconidia germination. Individual flavonoid concentrations resulted in a small increase of fungal growth, but the lowest flavonoid concentrations showed an inhibiting effect on fungal growth for all flavonoids tested. There is evidence to suggest, that low flavonoid concentrations exhibit slight antimicrobial properties against Fusarium oxysporum f. sp. lycopersici.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号