首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical analyses were used to determine whether capillary growth is an adaptive response to hypoxia. Parameter values were obtained from models of transverse sections of muscles in which individual fibers were distributed in square-ordered arrays and capillaries were added to the perimeters of individual fibers in the arrays. Increasing the number of capillaries up to 2.0 per fiber increased hypoxic tolerance by 157% above that expected for a Krogh cylinder. However, increasing the number of capillaries from 2.0 to 4.0 per fiber increased hypoxic tolerance by only 18% and, assuming the entire perimeter of each fiber was perfused with blood, increased hypoxic tolerance by only 11% over the value obtained when capillary-to-fiber ratio was 4.0. Capillary growth during normal maturation may result in capillary-to-fiber ratios around 2.0, near the upper limit for producing marked changes in hypoxic tolerance. Therefore, capillary growth may not be an adaptive response to ambient hypoxia because there is little or no gas transport benefit derived from the additional capillaries.  相似文献   

2.
The effect of CDP-choline on the in vivo incorporation of labeled precursors into DNA, RNA, and proteins in cerebral hemispheres, cerebellum, and brainstem of guinea pigs after hypoxic treatment was studied. The labeling of macromolecules extracted from the various subcellular fractions of these brain regions was also determined. Hypoxic treatment affected macromolecular labeling to a different extent in the three brain regions examined. CDP-choline treatment was not able to reverse the effect of hypoxia on DNA labeling, but it was able to remove the effect of hypoxia on RNA and protein labeling. The action of CDP-choline was particularly evident on the labeling of RNA in nuclei and mitochondria of the cerebellum and on the labeling of proteins in microsomes of the three brain regions examined.  相似文献   

3.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O(2)) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O(2), 5 h) using the matrigel assay. To further examine the role of HIF-1alpha in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1alpha (DNHIF-1alpha). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1alpha. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

4.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O2) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O2, 5 h) using the matrigel assay. To further examine the role of HIF-1α in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1α (DNHIF-1α). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1α. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

5.
Tumor hypoxia is a major parameter of radioresistance. Hypoxia PET imaging using several radiotracers (F-Miso, FAZA, Cu-ATSM, EF5…) may help predict response to radiotherapy. Hypoxic area evaluation may also help select patients for hypoxia-targeting drugs, and thus reinforcing radiotherapy effects. Hypoxia imaging may also be fused with radiotherapy planning CT to define radioresistance areas that may be boosted by dose-painting radiotherapy. Despite several difficulties (patient positioning, organ and tumor motion, image definition…), targeting hypoxic regions within tumors is one of the most promising research strategies of modern radiotherapy.  相似文献   

6.
Hypoxic tumours have the worst prognosis because they are the most aggressive and the most likely to metastasize. This may be because these aggressive cancers have a hypoxic core which generates signals that activate angiogenesis which enables the supply of nutrients and oxygen to a rapidly growing outer oxidative shell. The hypoxic core is a crucial element of this hypothesis, as is the fact that the cells in the hypoxic core are inherently adapted to survive hypoxia. We reasoned therefore that cancer cells exposed to hypoxia/anoxia should show the hallmarks of adaptation to hypoxia/anoxia, i.e. a down-regulation of protein synthesis and a reverse Pasteur effect. We tested this hypothesis in transformed (MCF-7) and normal (HME) human mammary epithelial cells, by exposing both cell types to a range of oxygen concentrations, including anoxia. We find that indeed protein synthesis is down-regulated in the MCF-7, but not in the HME cells in response to anoxia. The data on glycolysis are not as clear-cut, but in the light of similar previous measurements on hypoxia-tolerant animals, is still consistent with the hypothesis.  相似文献   

7.
8.
Hypoxia was induced by exposing rats to an atmosphere of 93% N2, 7% O2 for 4-48 hr. The animals became hypoxic as indicated by a decreased blood PaO2 (mean +/- SEM: 48 +/- 10 mm Hg). Hypoxia was accompanied by metabolic acidosis (pH 7.22 +/- 0.02) and decreased serum bicarbonate levels (9.0 +/- 4.0 meq/liter). Hypoxic rats also showed evidence of tissue hypoxia; liver tryptophan oxygenase levels were increased to 21 +/- 2 nmole/min/mg protein. In the hypoxic animals there was decreased jejunal mucosal (Na+-K+)-ATPase activity and an inhibition of active intestinal transport of sodium, glucose, 3-O-methylglucose, galactose, tyrosine, phenylalanine, and glycine as determined by in vivo perfusion studies. Jejunal fructose transport, which has a large passive component, was unaffected by hypoxia. The electrolyte, carbohydrate, and amino acid transport alterations produced by hypoxia were seen in the absence of an effect on jejunal cell number, DNA synthesis, or cell turnover. There was also no evidence of histological or ultrastructural damage. Furthermore, studies with a luminal macromolecular tracer, horseradish peroxidase, indicated that the jejunal lumen-to-blood barrier to macromolecules was also unaltered in these hypoxic animals. In vitro local oxygenation of the jejunum, by bubbling of 95% O2:5% CO2, markedly improved sodium and glucose (but not 3-O-methylglucose) absorption in hypoxic rats and control rats. The (Na+-K+)-ATPase activity of the jejunal mucosa of hypoxic rats was significantly enhanced by the local bubbling of 95% O2:5% CO2. Overall, our data indicate that during relatively mild conditions of hypoxia there is an inhibition of jejunal (Na+-K+)-ATPase activity and related transport processes that is prevented by in situ oxygenation.  相似文献   

9.
10.
Glioblastoma is the most aggressive malignant brain tumor in humans and is difficult to cure using current treatment options. Hypoxic regions are frequently found in glioblastoma, and increased levels of hypoxia are associated with poor clinical outcomes of glioblastoma patients. Hypoxia plays important roles in the progression and recurrence of glioblastoma because of drug delivery deficiencies and induction of hypoxia-inducible factor-1α in tumor cells, which lead to poor prognosis. We focused on a promising hypoxia-targeted internal radiotherapy agent, 64Cu-diacetyl-bis (N4-methylthiosemicarbazone) (64Cu-ATSM), to address the need for additional treatment for glioblastoma. This compound can target the overreduced state under hypoxic conditions within tumors. Clinical positron emission tomography studies using radiolabeled Cu-ATSM have shown that Cu-ATSM accumulates in glioblastoma and its uptake is associated with high hypoxia-inducible factor-1α expression. To evaluate the therapeutic potential of this agent for glioblastoma, we examined the efficacy of 64Cu-ATSM in mice bearing U87MG glioblastoma tumors. Administration of single dosage (18.5, 37, 74, 111, and 148 MBq) and multiple dosages (37 MBq × 4) of 64Cu-ATSM was investigated. Single administration of 64Cu-ATSM in high-dose groups dose-dependently inhibited tumor growth and prolonged survival, with slight and reverse signs of adverse events. Multiple dosages of 64Cu-ATSM remarkably inhibited tumor growth and prolonged survival. By splitting the dose of 64Cu-ATSM, no adverse effects were observed. Our findings indicate that multiple administrations of 64Cu-ATSM have effective antitumor effects in glioblastoma without side effects, indicating its potential for treating this fatal disease.  相似文献   

11.
Expression of procollagens (Col1a1/2, Col3a1, Col4a1/2, Col5a1/2) and fibronectin 1 (Fn1) in the mouse fetal placental tissue was examined during the second half of pregnancy. Ribonuclease protection assays (RPAs) revealed that levels of these mRNAs noticeably increased between Days 10 and 14 of pregnancy, and they remained at relatively constant levels thereafter. In situ hyridization showed that Col1a1 and Col4a1 mainly localized in the labyrinth, whereas Fn1 was expressed mainly in the spongiotrophoblast. Since members of the transforming growth factor-beta (TGFB) superfamily are involved in the regulation of extracellular matrix (ECM) expression in various tissues, mRNA levels of TGFB family members and their binding proteins were also examined by RPAs. Transforming growth factor-beta1-3 (Tgfb1-3), activin subunits (Inhba, Inhbb), follistatin (Fst), and follistatin-like 3 (Fstl3) were expressed in the placenta, whereas significant expression of myostatin (Mstn) was not detected. Although the expression patterns of Tgfb1-3 and Inhba in the placenta suggest possible involvement of TGFBs and activin A in the regulation of placental ECM expression, neither TGFBs nor activin A affected ECM mRNA levels in vitro. On the other hand, hypoxia significantly decreased Col1a1/2 and Col4a1/2 mRNAs in cultured placental cells, and a high-glucose condition significantly increased Col1a1 and Col3a1 mRNAs. Fn1 expression was increased under the high-glucose condition, although hypoxia also increased Fn1 expression to a lesser degree. These data suggest that an increase in oxygen tension and nutrient supply during placentation rather than TGFB family members may be responsible for the increase in the placental ECM mRNA expression.  相似文献   

12.
13.
Tumor tissues are known to harbor hypoxic areas. The hypoxic microenvironment promotes angiogenesis. Hypoxic tumor cells also manifest genome instability. DNA damage repair pathways, such as double-strand break repair, mismatch repair and base excision repair are known to be altered during hypoxia. This review is focused on the non-heme Fe(II) and 2-oxoglutarate-dependent dioxygenases which are involved in repair of DNA alkylation adducts. Activities of these DNA repair enzymes are completely oxygen-dependent and little information is available about inhibition of these enzymes during hypoxia. While impairment of function of non-heme dioxygenase during tumor hypoxia has been implicated in different studies, the possible outcomes with respect to mutagenesis and genomic instability are explored here.  相似文献   

14.
15.
The polyamines putrescine, spermidine (SPD), and spermine are a family of low-molecular-weight organic cations essential for cell growth and differentiation and other aspects of signal transduction. Hypoxic pulmonary vascular remodeling is accompanied by depressed lung polyamine synthesis and markedly augmented polyamine uptake. Cell types in which hypoxia induces polyamine transport in intact lung have not been delineated. Accordingly, rat lung and rat main pulmonary arterial explants were incubated with [(14)C]SPD in either normoxic (21% O(2)) or hypoxic (2% O(2)) environments for 24 h. Autoradiographic evaluation confirmed previous studies showing that, in normoxia, alveolar epithelial cells are dominant sites of polyamine uptake. In contrast, hypoxia was accompanied by prominent localization of [(14)C]SPD in conduit, muscularized, and partially muscularized pulmonary arteries, which was not evident in normoxic lung tissue. Hypoxic main pulmonary arterial explants also exhibited substantial increases in [(14)C]SPD uptake relative to control explants, and autoradiography revealed that enhanced uptake was most evident in the medial layer. Main pulmonary arterial explants denuded of endothelium failed to increase polyamine transport in hypoxia. Conversely, medium conditioned by endothelial cells cultured in hypoxic, but not in normoxic, environments enabled hypoxic transport induction in denuded arterial explants. These findings in arterial explants were recapitulated in rat cultured main pulmonary artery cells, including the enhancing effect of a soluble endothelium-derived factor(s) on hypoxic induction of [(14)C]SPD uptake in smooth muscle cells. Viewed collectively, these results show in intact lung tissue that hypoxia enhances polyamine transport in pulmonary artery smooth muscle by a mechanism requiring elaboration of an unknown factor(s) from endothelial cells.  相似文献   

16.
Fluctuating oxygen levels characterize the microenvironment of many cancers and tumor hypoxia is associated with increased invasion and metastatic potential concomitant with a poor prognosis. Similarly, the expression of lysyl oxidase (LOX) in breast cancer facilitates tumor cell migration and is associated with estrogen receptor negative status and reduced patient survival. Here we demonstrate that hypoxia/reoxygenation drives poorly invasive breast cancer cells toward a more aggressive phenotype by up-regulating LOX expression and catalytic activity. Specifically, hypoxia markedly increased LOX protein expression; however, catalytic activity (beta-aminopropionitrile inhibitable hydrogen peroxide production) was significantly reduced under hypoxic conditions. Moreover, poorly invasive breast cancer cells displayed a marked increase in LOX-dependent FAK/Src activation and cell migration following hypoxia/reoxygenation, but not in response to hypoxia alone. Furthermore, LOX expression is only partially dependent on hypoxia inducible factor-1 (HIF-1alpha) in poorly invasive breast cancer cells, as hypoxia mimetics and overexpression of HIF-1alpha could not up-regulate LOX expression to the levels observed under hypoxia. Clinically, LOX expression positively correlates with tumor progression and co-localization with hypoxic regions (defined by HIF-1alpha expression) in ductal carcinoma in situ and invasive ductal carcinoma primary tumors. However, positive correlation is lost in metastatic tumors, suggesting that LOX expression is independent of a hypoxic environment at later stages of tumor progression. This work demonstrates that both hypoxia and reoxygenation are necessary for LOX catalytic activity which facilitates breast cancer cell migration through a hydrogen peroxide-mediated mechanism; thereby illuminating a potentially novel mechanism by which poorly invasive cancer cells can obtain metastatic competency.  相似文献   

17.
The components that comprise the extracellular matrix (ECM) are integral to normal tissue homeostasis as well as the development and progression of breast tumors. The secretion, construction, and remodeling of the ECM are each regulated by a complex interplay between tumor cells, fibroblasts and macrophages. Transforming growth factor-β (TGF-β) is an essential molecule in regulating the cellular production of ECM molecules and the adhesive interactions of cells with the ECM. Additionally, hypoxic cell signals, initiated by oxygen deprivation, additional metabolic factors or receptor activation, are associated with ECM formation and the progression of breast cancer. Both TGF-β and hypoxic cell signals are implicated in the functional and morphological changes of cancer-associated-fibroblasts and tumor-associated-macrophages. Moreover, the enhanced recruitment of tumor and stromal cells in response to hypoxia-induced chemokines leads to increased ECM deposition and remodeling, increased blood vessel formation, and enhanced tumor migration. Thus, elucidation of the collaborative networks between tumor and stromal cells in response to the combined signals of TGF-β and hypoxia may yield insight into treatment parameters that target both tumor and stromal cells.  相似文献   

18.
19.
20.
Hypoxic tumors are resistant to conventional therapies through indirect mechanisms such as the selection of resistant phenotype under chronic hypoxia. Hyperbaric oxygen (HBO) therapy has been shown to increase oxygen level and induce apoptosis in hypoxic tumor. However, it could produce significant adverse effects including oxygen toxic seizures and severe radiation tissue injury due to high pressure. We have shown that repeated oxygenation at 30% O2 (1 atmospheres absolute) results in significant regression of MCF-7 tumor xenografts without any adverse effect. In MCF-7 cells, re-oxygenation showed an eightfold increase in cellular apoptosis. Both in hypoxic tumor and in hypoxic cells, that exclusively favor p53 to exist in mutant conformation, re-oxygenation restores p53 wild-type conformation. The oxygen-mediated rescue of mutant p53 followed by its trans-activation is responsible for the induction of p53-downstream apoptotic, cell-cycle arrest and DNA-repair genes. Further, p53 trans-activation may thus be due to its post-translational modifications as a result of re-oxygenation. We have thus concluded that oxygen therapy without pressure, as opposed to HBO therapy, may be ideal for hypoxic tumor regression, which functions through oxygen-mediated rescue of mutant p53 followed by induction of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号