首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Venezuelan equine encephalitis (VEE) is a reemerging, mosquito-borne viral disease of the neotropics that is severely debilitating and sometimes fatal to humans. Periodic epidemics mediated by equine amplification have been recognized since the 1920s, but interepidemic disease is rarely recognized. We report here clinical findings and genetic characterization of 42 cases of endemic VEE detected in Panama from 1961–2004. Recent clusters of cases occurred in Darien (eastern Panama) and Panama provinces (central Panama) near rainforest and swamp habitats. Patients ranged from 10 months to 48 years of age, and the more severe cases with neurological complications, including one fatal infection, were observed in children. The VEE virus strains isolated from these cases all belonged to an enzootic, subtype ID lineage known to circulate among sylvatic vectors and rodent reservoir hosts in Panama and Peru. These findings underscore endemic VEE as an important but usually neglected arboviral disease of Latin America.  相似文献   

2.
The first known outbreak of eastern equine encephalitis (EEE) in Vermont occurred on an emu farm in Rutland County in 2011. The first isolation of EEE virus (EEEV) in Vermont (VT11) was during this outbreak. Phylogenetic analysis revealed that VT11 was most closely related to FL01, a strain from Florida isolated in 2001, which is both geographically and temporally distinct from VT11. EEEV RNA was not detected in any of the 3,905 mosquito specimens tested, and the specific vectors associated with this outbreak are undetermined.  相似文献   

3.
Eastern equine encephalitis virus (EEEV) causes a highly pathogenic mosquito-borne zoonosis that is responsible for sporadic outbreaks of severe illness in humans and equines in the eastern USA. Culiseta (Cs.) melanura is the primary vector of EEEV in most geographic regions but its feeding patterns on specific avian and mammalian hosts are largely unknown in the mid-Atlantic region. The objectives of our study were to: 1) identify avian hosts of Cs. melanura and evaluate their potential role in enzootic amplification of EEEV, 2) assess spatial and temporal patterns of virus activity during a season of intense virus transmission, and 3) investigate the potential role of Cs. melanura in epidemic/epizootic transmission of EEEV to humans and equines. Accordingly, we collected mosquitoes at 55 sites in Suffolk, Virginia in 2013, and identified the source of blood meals in engorged mosquitoes by nucleotide sequencing PCR products of the mitochondrial cytochrome b gene. We also examined field-collected mosquitoes for evidence of infection with EEEV using Vector Test, cell culture, and PCR. Analysis of 188 engorged Cs. melanura sampled from April through October 2013 indicated that 95.2%, 4.3%, and 0.5% obtained blood meals from avian, mammalian, and reptilian hosts, respectively. American Robin was the most frequently identified host for Cs. melanura (42.6% of blood meals) followed by Northern Cardinal (16.0%), European Starling (11.2%), Carolina Wren (4.3%), and Common Grackle (4.3%). EEEV was detected in 106 mosquito pools of Cs. melanura, and the number of virus positive pools peaked in late July with 22 positive pools and a Maximum Likelihood Estimation (MLE) infection rate of 4.46 per 1,000 mosquitoes. Our findings highlight the importance of Cs. melanura as a regional EEEV vector based on frequent feeding on virus-competent bird species. A small proportion of blood meals acquired from mammalian hosts suggests the possibility that this species may occasionally contribute to epidemic/epizootic transmission of EEEV.  相似文献   

4.
When partially purified Eastern equine encephalitis (EEE) virus was centrifuged to equilibrium in CsCl, three virus specific bands were observed. A hemagglutinin was detected at a buoyant density of 1.18 g/cm3. Infectious EEE virus banded in two positions; most of the virus banded at 1.20 g/cm3 and a lesser amount banded at 1.22 to 1.23 g/cm3. Analysis of radioactive profiles of CsCl-fractionated EEE virus labeled with either 32PO4 or 3H-uridine suggested that the hemagglutinin was stripped from the intact EEE virion. The viral origin of the hemagglutinin was verified by inhibition with specific antiserum. Attempts to differentiate between infectious EEE virus of the different buoyant densities showed that the denser particle was neither a virus contaminant nor a density mutant. No evidence was obtained to indicate that the denser particle was an immature form of EEE virus. The two infectious EEE species obtained after CsCl fractionation were indistinguishable antigenically. Furthermore, unfractionated as well as CsCl-fractionated EEE virus sedimented at about 260S in sucrose gradients. These results together with the results of rebanding experiments suggested that the denser EEE species (1.23 g/cm3) results from a salt (CsCl)-induced alteration or breakdown of the EEE virion (1.20 g/cm3), and that it arises as the hemagglutinin is stripped from the surface of the EEE virion.  相似文献   

5.

Background

Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors.

Methodology and principle findings

Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens.

Conclusion and significance

Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci.  相似文献   

6.
An antigen extinction test in hamsters is described. Comparative potency assays with guinea pigs and hamsters showed the latter to be a suitable, advantageous replacement animal in these assays.  相似文献   

7.
为构建东方马脑炎病毒E2基因原核表达载体,完成E2蛋白表达及其免疫活性研究。利用PCR方法扩增E2编码全基因,大小为1 260 bp,将酶切后目的片段连接到原核表达载体pET-30a(+)上,构建成重组质粒pET30a(+)-EEEV-E2,采用酶切和测序分析方法鉴定正确的重组质粒转化到大肠杆菌BL21中,诱导E2蛋白表达,并用SDS-PAGE电泳和Western-blotting分析和鉴定目的蛋白;最后,用纯化的E2蛋白免疫BALB/c小鼠,小鼠随机分成4组:PBS对照组、弗氏佐剂对照组、E2蛋白免疫组和E2蛋白+弗氏佐剂免疫组,每组小鼠免疫2次,两次免疫间隔时间为14天,免疫剂量均为100μL/只;小鼠初次免疫后第10天,用细胞因子ELISA试剂盒检测血清中IL-6、IL-12与TNF-α的浓度,加强免疫后第14天,用EEEV的假病毒检测血清中E2蛋白抗体的中和作用。结果表明完成了E2基因的原核表达载体pET30a(+)-E2构建和成功表达了带有His标签的E2融合蛋白,蛋白以包涵体形式存在,大小为53.0 kDa;免疫小鼠血清中产生了高水平的IL-6、IL-12与TNF-α和具有较强中和作用的E2蛋白抗体。研究结果为今后E2蛋白作为基因工程亚单位疫苗的研究提供了重要参考。  相似文献   

8.
During 1971, an epizootic of Venezuelan equine encephalitis (VEE) reached the United States. Laboratory tests were performed on a large number of sick, healthy, unvaccinated, and vaccinated horses. Neutralization (N) tests in cell cultures revealed that 153 of 193 (79.3%) equines outside the state of Texas and 175 of 204 (85.8%) within Texas (82.6% overall) had detectable N antibody to VEE virus a week or more after vaccination. Twenty-six of 40 (65%) non-Texas equines and 18 of 29 (62%) Texas equines which had no detectable antibody against VEE virus a week or more after vaccination had N antibody against Eastern equine encephalitis (EEE) or Western equine encephalitis (WEE) virus or both, whereas only 50 of 153 (32.7%) non-Texas equines and 82 of 175 (46.9%) Texas equines with demonstrable N antibody against VEE also had N antibody against EEE and/or WEE virus. In vaccinated equines, significant negative correlations were found between the occurrence of antibody to VEE and antibody to EEE and/or WEE virus. These findings support the hypothesis that pre-existing antibody to EEE and/or WEE virus may modify or interfere with infection by VEE virus. The epizoologic significance of this possibility is discussed briefly.  相似文献   

9.
Recently, we compared amino acid sequences of the E2 glycoprotein of natural North American eastern equine encephalitis virus (NA-EEEV) isolates and demonstrated that naturally circulating viruses interact with heparan sulfate (HS) and that this interaction contributes to the extreme neurovirulence of EEEV (C. L. Gardner, G. D. Ebel, K. D. Ryman, and W. B. Klimstra, Proc. Natl. Acad. Sci. U. S. A., 108:16026–16031, 2011). In the current study, we have examined the contribution to HS binding of each of three lysine residues in the E2 71-to-77 region that comprise the primary HS binding site of wild-type (WT) NA-EEEV viruses. We also report that the original sequence comparison identified five virus isolates, each with one of three amino acid differences in the E2 71-to-77 region, including mutations in residues critical for HS binding by the WT virus. The natural variant viruses, which possessed either a mutation from lysine to glutamine at E2 71, a mutation from lysine to threonine at E2 71, or a mutation from threonine to lysine at E2 72, exhibited altered interactions with heparan sulfate and cell surfaces and altered virulence in a mouse model of EEEV disease. An electrostatic map of the EEEV E1/E2 heterotrimer based upon the recent Chikungunya virus crystal structure (J. E. Voss, M. C. Vaney, S. Duquerroy, C. Vonrhein, C. Girard-Blanc, E. Crublet, A. Thompson, G. Bricogne, and F. A. Rey, Nature, 468:709–712, 2010) showed the HS binding site to be at the apical surface of E2, with variants affecting the electrochemical nature of the binding site. Together, these results suggest that natural variation in the EEEV HS binding domain may arise during EEEV sylvatic cycles and that this variation may influence receptor interaction and the severity of EEEV disease.  相似文献   

10.
Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine.  相似文献   

11.
The eastern equine encephalitis (EEE) complex consists of four distinct genetic lineages: one that circulates in North America (NA EEEV) and the Caribbean and three that circulate in Central and South America (SA EEEV). Differences in their geographic, pathogenic, and epidemiologic profiles prompted evaluation of their genetic diversity and evolutionary histories. The structural polyprotein open reading frames of all available SA EEEV and recent NA EEEV isolates were sequenced and used in evolutionary and phylogenetic analyses. The nucleotide substitution rate per year for SA EEEV (1.2 × 10−4) was lower and more consistent than that for NA EEEV (2.7 × 10−4), which exhibited considerable rate variation among constituent clades. Estimates of time since divergence varied widely depending upon the sequences used, with NA and SA EEEV diverging ca. 922 to 4,856 years ago and the two main SA EEEV lineages diverging ca. 577 to 2,927 years ago. The single, monophyletic NA EEEV lineage exhibited mainly temporally associated relationships and was highly conserved throughout its geographic range. In contrast, SA EEEV comprised three divergent lineages, two consisting of highly conserved geographic groupings that completely lacked temporal associations. A phylogenetic comparison of SA EEEV and Venezuelan equine encephalitis viruses (VEEV) demonstrated similar genetic and evolutionary patterns, consistent with the well-documented use of mammalian reservoir hosts by VEEV. Our results emphasize the evolutionary and genetic divergences between members of the NA and SA EEEV lineages, consistent with major differences in pathogenicity and ecology, and propose that NA and SA EEEV be reclassified as distinct species in the EEE complex.Eastern equine encephalitis virus (EEEV) is an important veterinary and human pathogen belonging to one of seven antigenic complexes in the Alphavirus genus, family Togaviridae (32). Isolated throughout the Americas, EEEV is classified as the only species in the eastern equine encephalitis (EEE) complex (9, 10), which was originally divided into North and South American varieties based on antigenic properties (11). However, additional antigenic and phylogenetic analyses have refined its classification to include four subtypes that correspond to four major genetic lineages (I to IV) (7, 55). North American EEEV (NA EEEV) strains and most strains from the Caribbean comprise subtype/lineage I, while subtypes/lineages II to IV include South and Central American EEEV (SA EEEV) strains. The EEEV genome consists of a nonsegmented, single-stranded, positive-sense RNA of approximately 11.7 kb, which includes a 5′ cap and a 3′ poly(A) tail. The 5′ end of the genome encodes four nonstructural proteins (nsP1 to -4), while a subgenomic RNA (26S) is encoded by the 3′ end and ultimately produces three main structural proteins: capsid and envelope glycoproteins E1 and E2 (46).Despite considerable nucleotide sequence divergence between NA and SA EEEV lineages, NA EEEV is highly conserved throughout its geographic and temporal spectra. Multiple robust analyses have demonstrated less than 2% nucleotide sequence divergence among NA EEEV strains isolated between 1933 and 2007 (5, 7, 64, 68, 69). An overall temporal trend of genetic conservation is also maintained, with newer isolates differing most from ancestral strains at the base of the North American clade (7, 64). In contrast, SA EEEV is highly divergent both between and among the three lineages/subtypes. Although less robust than previous NA EEEV phylogenetic analyses, those of SA EEEV show a tendency for geographic clustering of isolates rather than temporal relationships (7). Differing patterns of genetic conservation between NA and SA EEEV may be the result of differences in their ecology and adaptation to different mosquito and vertebrate hosts (65).Transmission of NA EEEV occurs in an enzootic cycle involving the ornithophilic mosquito vector Culiseta melanura and passerine birds in hardwood swamp habitats (32, 43). The broad geographic distribution and distinctly ornithophagic behavior of Cs. melanura result in a close relationship between NA EEEV and avian vertebrate hosts, which is one proposed mechanism for its highly conserved genetic nature. Infected birds provide for efficient geographic dispersal and the mixing of strains with distant origins. While genetic drift tends to have less impact on large, panmictic populations, competition and natural selection may periodically constrain genetic diversity in the NA EEEV population, resulting in the antigenic and genetic conservation observed (64, 66). Transmission of NA EEEV by bridge vectors probably does not impact viral evolution; however, it does result in sporadic outbreaks of severe disease in humans, equids, and other domestic animals, including game birds, swine, and dogs that are considered dead-end hosts (22, 23, 43, 50).Although they are associated with equine disease, SA strains of EEEV are not clearly associated with human disease (4, 17, 18, 40). This lack of human pathogenicity has limited research to expand our epidemiologic and ecologic understanding of SA strains. EEEV isolations from Culex (Melanoconion) spp. in the Spissipes section (Culex pedroi in South America and Culex taeniopus in Central America) suggest that they are the primary enzootic, and potentially epizootic, vectors (28, 33, 53, 58). Movement of these vectors beyond their tropical forest habitat is typically limited (29), which may influence the focality of transmission. However, these species are relatively catholic in their feeding behavior, which broadens the potential transmission cycles used by SA EEEV. Greater vector diversity in tropical regions may also contribute to genetic diversity among the SA EEEV lineages, although vector competence data are limited.The vertebrate ecology of SA EEEV is not well described, with serological associations including wild birds, ground-dwelling rodents, marsupials, and reptiles (12, 17, 31, 45, 56, 57, 58). The observed genetic divergence and geographic clustering of the SA EEEV phylogeny could reflect the use of ground-dwelling mammals as primary hosts for enzootic transmission (43, 65). With limited mobility, these vector and vertebrate species may restrict the distribution of SA EEEV to geographically defined regions, thus limiting competition among distant strains and allowing for the independent evolution of genetic lineages (65). Geographically delineated transmission foci may also be more susceptible to the impacts of genetic drift, thus constraining genetic diversity locally. Venezuelan equine encephalitis viruses (VEEV), which also utilize Culex (Melanoconion) sp. vectors and small mammals as primary vertebrate hosts (15, 42, 51, 52, 59, 67), exhibit a similar genetic pattern of independent evolution and multiple, cocirculating subtypes in Central and South America (60). However, a robust comparison of the evolutionary patterns between SA EEEV and VEEV has not been conducted.Elucidation of patterns of enzootic transmission and dispersal of zoonotic, arboviral pathogens is critical for understanding and predicting the risk to human health. Therefore, we studied the evolutionary progression of the EEE complex to clarify the extent of divergence between NA and SA EEEV. Because previous analyses of SA EEEV were either limited in their geographic scope or utilized only partial, concatenated sequences, conclusions regarding the genetic relationships of members within and among EEEV lineages were limited. In addition, previous analyses utilized linear regression and were based on few representatives of a single SA EEEV lineage. Here we exploited contemporary techniques to sequence and analyze the structural protein open reading frames (ORFs) of all available SA EEEV and additional NA EEEV isolates and phylogenetically compared SA EEEV and VEEV. Our results support evolutionary and ecological diversity between NA and SA EEEV and suggest that NA and SA lineages be considered independent species in the EEE complex.  相似文献   

12.
SYNOPSIS Plasmodium gonatodi sp. nov. is described from Gonatodes albogularis fuscus of eastern Panama. It is characterized by elongate gametocytes and polymorphic schizonts containing 12-46 nuclei when apparently mature. Both proerythrocytes and erythrocytes are commonly parasitized, host cells are hypertrophied and distorted, and their nuclei are displaced. Prematuration sexual stages may be irregularly shaped and larger than mature gametocytes.
Plasmodium diploglossi Aragão and Neiva , 1909 is reported from Mabuya mabouya in eastern Panama, and Plasmodium morulum sp. nov. is described from this host. P. morulum usually parasitizes immature erythrocytes, and is characterized by lenticular or oval to round gametocytes, and schizonts with 14-40 nuclei usually arranged in a globular mass. Host cells are slightly hypertrophied and distorted, and their nuclei are usually displaced. Inoculation of infected blood into clean hosts produces numerous schizonts in white cells as well as in the erythrocyte series.
Pigment in both P. gonatodi and P. morulum , if present, consists of a few minute dark dots which do not meet the polarized light test for hemozoin.  相似文献   

13.
14.
Currently, there are no FDA-licensed vaccines or therapeutics for eastern equine encephalitis virus (EEEV) for human use. We recently developed several methods to inactivate CVEV1219, a chimeric live-attenuated eastern equine encephalitis virus (EEEV). Dosage and schedule studies were conducted to evaluate the immunogenicity and protective efficacy of three potential second-generation inactivated EEEV (iEEEV) vaccine candidates in mice: formalin-inactivated CVEV1219 (fCVEV1219), INA-inactivated CVEV1219 (iCVEV1219) and gamma-irradiated CVEV1219 (gCVEV1219). Both fCVEV1219 and gCVEV1219 provided partial to complete protection against an aerosol challenge when administered by different routes and schedules at various doses, while iCVEV1219 was unable to provide substantial protection against an aerosol challenge by any route, dose, or schedule tested. When evaluating antibody responses, neutralizing antibody, not virus specific IgG or IgA, was the best correlate of protection. The results of these studies suggest that both fCVEV1219 and gCVEV1219 should be evaluated further and considered for advancement as potential second-generation inactivated vaccine candidates for EEEV.  相似文献   

15.
16.
17.
Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus that can cause both human and equine encephalitis with high case fatality rates. EEEV can also be widespread among birds, including pheasants, ostriches, emu, turkeys, whooping cranes and chickens. The E2 protein of EEEV and other Alphaviruses is an important immunogenic protein that elicits antibodies of diagnostic value. While many therapeutic and diagnostic applications of E2 protein-specific antibodies have been reported, the specific epitopes on E2 protein recognized by the antibody responses of different susceptible hosts, including avian species, remain poorly defined. In the present study, the avian E2-reactive polyclonal antibody (PAb) response was mapped to linear peptide epitopes using PAbs elicited in chickens and ducks following immunization with recombinant EEEV E2 protein and a series of 42 partially overlapping peptides covering the entire EEEV E2 protein. We identified 12 and 13 peptides recognized by the chicken and duck PAb response, respectively. Six of these linear peptides were commonly recognized by PAbs elicited in both avian species. Among them five epitopes recognized by both avian, the epitopes located at amino acids 211–226 and 331–352 were conserved among the EEEV antigenic complex, but not other associated alphaviruses, whereas the epitopes at amino acids 11–26, 30–45 and 151–166 were specific to EEEV subtype I. The five common peptide epitopes were not recognized by avian PAbs against Avian Influenza Virus (AIV) and Duck Plague Virus (DPV). The identification and characterization of EEEV E2 antibody epitopes may be aid the development of diagnostic tools and facilitate the design of epitope-based vaccines for EEEV. These results also offer information with which to study the structure of EEEV E2 protein.  相似文献   

18.
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broad panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Finally, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.  相似文献   

19.
BackgroundSporadic Japanese encephalitis (JE) cases still have been reported in Zhejiang Province in recent years, and concerns about vaccine cross-protection and population-level immunity have been raised off and on within the public health sphere. Genotype I (GI) has replaced GIII as the dominant genotype in Asian countries during the past few decades, which caused considerable concerns about the potential change of epidemiology characteristics and the vaccine effectiveness. The aim of this study was to investigate the prevalence of JE neutralizing antibody and its waning antibody trend after live attenuated JE vaccine immunization. Additionally, this study analyzed the molecular characteristics of the E gene of Zhejiang Japanese encephalitis virus (JEV) strains, and established genetic relationships with other JEV strains.Conclusion/SignificancesJE neutralizing antibody positive rates increase in age ≥10 years old population, likely reflecting natural infection or natural boosting of immunity through exposure to wild virus. JE seropositivity rates were quite low in <35 years old age groups in Zhejiang Province. Waning of neutralizing antibody after live attenuated vaccine immunization was observed, but the clinical significance should be further investigated. Both the peripheral antibody response and genetic characterization indicate that current live attenuated JE vaccine conferred equal neutralizing potency against GI or GIII of wild strains. GI has replaced GIII as the dominant genotype in Zhejiang in the past few decades. Although the chance of exposure to wild JE virus has reduced, the virus still circulates in nature; therefore, it is necessary to implement immunization program for children continually and to conduct surveillance activity periodically.  相似文献   

20.
Venezuelan equine encephalitis (VEE) virus was purified and concentrated by chromatography of tissue culture supernatant fluids on diethylaminoethyl-cellulose columns. Stepwise gradient elution studies indicated a broad elution pattern for the virus, with recovery occurring from 0.05 to 0.7 m NaCl. Optical density, infectivity, hemagglutination (HA), and complement fixation (CF) assays indicated that complete recovery of input virus in highly purified form was possible. Single-step elution with 0.7 m tris(hydroxymethyl)aminomethane-succinate-salt buffer resulted in a virus volume decrease of 85% with a concomitant increase in infectivity and antigenicity. Recoveries consistently equaled or exceeded 100% of the input preparations. Additional purification of column-recovered virus was obtained by sedimentation of pooled virus eluates on 50% sucrose cushions. Exposure of borate saline and 0.5% histidine suspensions of purified VEE virus preparations to 6 x 10(6) r of gamma radiation resulted in a loss of infectivity for tissue culture and a loss of lethality for weanling and suckling mice. Inactivation was an exponential function of the dosage. In contrast to infectivity, antigencity (HA and CF) of both saline and histidine preparations was retained after irradiation with doses as high as 6 x 10(6) r. Purified and irradiated VEE virus preparations have been successfully used for routine serological tests and are being evaluated as vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号