首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid-sensing ion channels (ASICs) are a group of trimeric cation permeable channels gated by extracellular protons that are mainly expressed in the nervous system. Despite the structural information available for ASIC1, there is limited understanding of the molecular mechanism that allows these channels to sense and respond to drops in extracellular pH. In this report, we employed the substituted cysteine accessibility method and site-directed mutagenesis to examine the mechanism of activation of ASIC1a by extracellular protons. We found that the modification of E238C and D345C channels by MTSET reduced proton apparent affinity for activation. Furthermore, the introduction of positively charged residues at position 345 rendered shifted biphasic proton activation curves. Likewise, channels bearing mutations at positions 79 and 416 in the palm domain of the channel showed reduced proton apparent affinity and biphasic proton activation curves. Of significance, the effect of the mutations at positions 79 and 345 on channel activation was additive. E79K-D345K required a change to a pH lower than 2 for maximal activation. In summary, this study provides direct evidence for the presence of two distinct proton coordination sites in the extracellular region of ASIC1a, which jointly facilitate pore opening in response to extracellular acidification.  相似文献   

2.
Neurons of the mammalian nervous system express the proton-sensing ion channel ASIC1. Low concentrations of protons in the normal range of extracellular pH, pH 7.4–7.3, shut the pore by a conformational transition referred as steady-state desensitization. Therefore, the potential of local acidification to open ASIC1 relies on proton affinity for desensitization. This property is important physiologically and also can be exploited to develop strategies to increase or decrease the channel response to protons. In a previous study (Li, T., Yang, Y., and Canessa, C. M. (2010) J. Biol. Chem. 285, 22706–22712), we found that Leu-85 in the β1-β2 linker of the extracellular domain decreases the apparent proton affinity for steady-state desensitization and retards openings, slowing down the time course of the macroscopic currents. Here, we show that Asn-415 in the β11-β12 linker works together with the β1-β2 linker to stabilize a closed conformation that delays transition from the closed to the desensitized state. Substitutions of Asn-415 for Cys, Ser, or Gly render ASIC1 responsive to small increases in proton concentrations near the baseline physiological pH.  相似文献   

3.
Acid-sensing ion channels (ASICs) are trimeric cation-selective proton-gated ion channels expressed in the central and peripheral nervous systems. The pore-forming transmembrane helices in these channels are linked by short loops to the palm domain in the extracellular region. Here, we explore the contribution to proton gating and desensitization of Glu-79 and Glu-416 in the palm domain of ASIC1a. Engineered Cys, Lys, and Gln substitutions at these positions shifted apparent proton affinity toward more acidic values. Double mutant cycle analysis indicated that Glu-79 and Glu-416 cooperatively facilitated pore opening in response to extracellular acidification. Channels bearing Cys at position 79 or 416 were irreversibly modified by thiol-reactive reagents in a state-dependent manner. Glu-79 and Glu-416 are located in β-strands 1 and 12, respectively. The covalent modification by (2-(trimethylammonium)ethyl) methanethiosulfonate bromide of Cys at position 79 impacted conformational changes associated with pore closing during desensitization, whereas the modification of Cys at position 416 affected conformational changes associated with proton gating. These results suggest that β-strands 1 and 12 contribute antagonistically to activation and desensitization of ASIC1a. Site-directed mutagenesis experiments indicated that the lower palm domain contracts in response to extracellular acidification. Taken together, our studies suggest that the lower palm domain mediates conformational movements that drive pore opening and closing events.  相似文献   

4.
Acid-sensing ion channels (ASICs) are neuronal proton-gated cation channels associated with nociception, fear, depression, seizure, and neuronal degeneration, suggesting roles in pain and neurological and psychiatric disorders. We have recently discovered black mamba venom peptides called mambalgin-1 and mambalgin-2, which are new three-finger toxins that specifically inhibit with the same pharmacological profile ASIC channels to exert strong analgesic effects in vivo. We now combined bioinformatics and functional approaches to uncover the molecular mechanism of channel inhibition by the mambalgin-2 pain-relieving peptide. Mambalgin-2 binds mainly in a region of ASIC1a involving the upper part of the thumb domain (residues Asp-349 and Phe-350), the palm domain of an adjacent subunit, and the β-ball domain (residues Arg-190, Asp-258, and Gln-259). This region overlaps with the acidic pocket (pH sensor) of the channel. The peptide exerts both stimulatory and inhibitory effects on ASIC1a, and we propose a model where mambalgin-2 traps the channel in a closed conformation by precluding the conformational change of the palm and β-ball domains that follows proton activation. These data help to understand inhibition by mambalgins and provide clues for the development of new optimized blockers of ASIC channels.  相似文献   

5.
Acid-sensing ion channels (ASICs) are sodium channels gated by extracellular protons. The recent crystallization of ASIC1a identified potential binding sites for Cl in the extracellular domain that are highly conserved between ASIC isoforms. However, the significance of Cl binding is unknown. We investigated the effect of Cl substitution on heterologously expressed ASIC1a current and H+-gated currents from hippocampal neurons recorded by whole-cell patch clamp. Replacement of extracellular Cl with the impermeable and inert anion methanesulfonate (MeSO3) caused ASIC1a currents to desensitize at a faster rate and attenuated tachyphylaxis. However, peak current amplitude, pH sensitivity, and selectivity were unchanged. Other anions, including Br, I, and thiocyanate, also altered the kinetics of desensitization and tachyphylaxis. Mutation of the residues that form the Cl-binding site in ASIC1a abolished the modulatory effects of anions. The results of anion substitution on native ASIC channels in hippocampal neurons mirrored those in heterologously expressed ASIC1a and altered acid-induced neuronal death. Anion modulation of ASICs provides new insight into channel gating and may prove important in pathological brain conditions associated with changes in pH and Cl.  相似文献   

6.
A growing body of evidence suggests that the extracellular domain of the epithelial Na+ channel (ENaC) functions as a sensor that fine tunes channel activity in response to changes in the extracellular environment. We previously found that acidic pH increases the activity of human ENaC, which results from a decrease in Na+ self-inhibition. In the current work, we identified extracellular domain residues responsible for this regulation. We found that rat ENaC is less sensitive to pH than human ENaC, an effect mediated in part by the γ subunit. We identified a group of seven residues in the extracellular domain of γENaC (Asp-164, Gln-165, Asp-166, Glu-292, Asp-335, His-439, and Glu-455) that, when individually mutated to Ala, decreased proton activation of ENaC. γE455 is conserved in βENaC (Glu-446); mutation of this residue to neutral amino acids (Ala, Cys) reduced ENaC stimulation by acidic pH, whereas reintroduction of a negative charge (by MTSES modification of Cys) restored pH regulation. Combination of the seven γENaC mutations with βE446A generated a channel that was not activated by acidic pH, but inhibition by alkaline pH was intact. Moreover, these mutations reduced the effect of pH on Na+ self-inhibition. Together, the data identify eight extracellular domain residues in human β- and γENaC that are required for regulation by acidic pH.  相似文献   

7.
Acid-sensing ion channels (ASICs) are proton-activated channels expressed in neurons of the central and peripheral nervous systems where they modulate neuronal activity in response to external increases in proton concentration. The size of ASIC1 currents evoked by a given local acidification is determined by the number of channels in the plasma membrane and by the apparent proton affinities for activation and steady-state desensitization of the channel. Thus, the magnitude of the pH drop and the value of the baseline pH both are functionally important. Recent characterization of ASIC1s from an increasing number of species has made evident that proton affinities of these channels vary across vertebrates. We found that in species with high baseline plasma pH, e.g. frog, shark, and fish, ASIC1 has high proton affinity compared with the mammalian channel. The β1-β2 linker in the extracellular domain, specifically by the substitution M85L, determines the interspecies differences in proton affinities and also the time course of ASIC1 macroscopic currents. The mechanism underlying these observations is a delay in channel opening after application of protons, most likely by stabilizing a closed conformation that decreases the apparent affinity to protons and also slows the rise and decay phases of the current. Together, the results suggest evolutionary adaptation of ASIC1 to match the value of the species-specific plasma pH. At the molecular level, adaptation is achieved by substitutions of nonionizable residues rather than by modification of the channel proton sensor.  相似文献   

8.
Acid-sensing ion channels (ASICs) are known to be primarily activated by extracellular protons. Recently, we characterized a novel nonproton ligand (2-guanidine-4-methylquinazoline, GMQ), which activates the ASIC3 channel subtype at neutral pH. Using an interactive computational-experimental approach, here we extend our investigation to delineate the architecture of the GMQ-sensing domain in the ASIC3 channels. We first established a GMQ binding mode and revealed that residues Glu-423, Glu-79, Leu-77, Arg-376, Gln-271, and Gln-269 play key roles in forming the GMQ-sensing domain. We then verified the GMQ binding mode using ab initio calculation and mutagenesis and demonstrated the critical role of the above GMQ-binding residues in the interplay among GMQ, proton, and Ca(2+) in regulating the function of ASIC3. Additionally, we showed that the same residues involved in coordinating GMQ responses are also critical for activation of the ASIC3(E79C) mutant by thiol-reactive compound DTNB. Thus, a range of complementary techniques provide independent evidence for the structural details of the GMQ-sensing domain at atomic level, laying the foundation for further investigations of endogenous nonproton ligands and gating mechanisms of the ASIC3 channels.  相似文献   

9.
The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. In these channels, the conserved charged residues in the intracellular S4-S5 region have been proposed to constitute part of a voltage sensor that acts in concert with other stimuli to regulate channel activation. The molecular basis of this gating event is poorly understood. We mutated charged residues all along the S4 and the S4-S5 linker of TRPV1 and identified four potential voltage-sensing residues (Arg(557), Glu(570), Asp(576), and Arg(579)) that, when specifically mutated, altered the functionality of the channel with respect to voltage, capsaicin, heat, 2-APB, and/or their interactions in different ways. The nonfunctional charge-reversing mutations R557E and R579E were partially rescued by the charge-swapping mutations R557E/E570R and D576R/R579E, indicating that electrostatic interactions contribute to allosteric coupling between the voltage-, temperature- and capsaicin-dependent activation mechanisms. The mutant K571E was normal in all aspects of TRPV1 activation except for 2-APB, revealing the specific role of Lys(571) in chemical sensitivity. Surprisingly, substitutions at homologous residues in TRPV2 or TRPV3 had no effect on temperature- and 2-APB-induced activity. Thus, the charged residues in S4 and the S4-S5 linker contribute to voltage sensing in TRPV1 and, despite their highly conserved nature, regulate the temperature and chemical gating in the various TRPV channels in different ways.  相似文献   

10.
The conformational changes in the agonist binding domain of the glycine-binding GluN1 and glutamate-binding GluN2A subunits of the N-methyl D-aspartic acid receptor upon binding agonists of varying efficacy have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances indicate a cleft closure conformational change at the GluN1 subunit upon binding agonists; however, no significant changes in the cleft closure are observed between partial and full agonists. This is consistent with the previously reported crystal structures for the isolated agonist binding domain of this receptor. Additionally, the LRET-based distances show that the agonist binding domain of the glutamate-binding GluN2A subunit exhibits a graded cleft closure with the extent of cleft closure being proportional to the extent of activation, indicating that the mechanism of activation in this subunit is similar to that of the glutamate binding α-amino-5-methyl-3-hydroxy-4-isoxazole propionate and kainate subtypes of the ionotropic glutamate receptors.  相似文献   

11.
The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.  相似文献   

12.
Protons impart isoform-specific modulation of inactivation in neuronal, skeletal muscle, and cardiac voltage-gated sodium (NaV) channels. Although the structural basis of proton block in NaV channels has been well described, the amino acid residues responsible for the changes in NaV kinetics during extracellular acidosis are as yet unknown. We expressed wild-type (WT) and two pore mutant constructs (H880Q and C373F) of the human cardiac NaV channel, NaV1.5, in Xenopus oocytes. C373F and H880Q both attenuated proton block, abolished proton modulation of use-dependent inactivation, and altered pH modulation of the steady-state and kinetic parameters of slow inactivation. Additionally, C373F significantly reduced the maximum probability of use-dependent inactivation and slow inactivation, relative to WT. H880Q also significantly reduced the maximum probability of slow inactivation and shifted the voltage dependence of activation and fast inactivation to more positive potentials, relative to WT. These data suggest that Cys-373 and His-880 in NaV1.5 are proton sensors for use-dependent and slow inactivation and have implications in isoform-specific modulation of NaV channels.  相似文献   

13.
It is now believed that the allosteric modulation produced by ethanol in glycine receptors (GlyRs) depends on alcohol binding to discrete sites within the protein structure. Thus, the differential ethanol sensitivity of diverse GlyR isoforms and mutants was explained by the presence of specific residues in putative alcohol pockets. Here, we demonstrate that ethanol sensitivity in two ligand-gated ion receptor members, the GlyR adult α1 and embryonic α2 subunits, can be modified through selective mutations that rescued or impaired Gβγ modulation. Even though both isoforms were able to physically interact with Gβγ, only the α1 GlyR was functionally modulated by Gβγ and pharmacological ethanol concentrations. Remarkably, the simultaneous switching of two transmembrane and a single extracellular residue in α2 GlyRs was enough to generate GlyRs modulated by Gβγ and low ethanol concentrations. Interestingly, although we found that these TM residues were different to those in the alcohol binding site, the extracellular residue was recently implicated in conformational changes important to generate a pre-open-activated state that precedes ion channel gating. Thus, these results support the idea that the differential ethanol sensitivity of these two GlyR isoforms rests on conformational changes in transmembrane and extracellular residues within the ion channel structure rather than in differences in alcohol binding pockets. Our results describe the molecular basis for the differential ethanol sensitivity of two ligand-gated ion receptor members based on selective Gβγ modulation and provide a new mechanistic framework for allosteric modulations of abuse drugs.  相似文献   

14.
Acid-sensing ion channels (ASICs) are non-selective cation channels activated by extracellular acidosis associated with many physiological and pathological conditions. A detailed understanding of the mechanisms that govern cell surface expression of ASICs, therefore, is critical for better understanding of the cell signaling under acidosis conditions. In this study, we examined the role of a highly conserved salt bridge residing at the extracellular loop of rat ASIC3 (Asp(107)-Arg(153)) and human ASIC1a (Asp(107)-Arg(160)) channels. Comprehensive mutagenesis and electrophysiological recordings revealed that the salt bridge is essential for functional expression of ASICs in a pH sensing-independent manner. Surface biotinylation and immunolabeling of an extracellular epitope indicated that mutations, including even minor alterations, at the salt bridge impaired cell surface expression of ASICs. Molecular dynamics simulations, normal mode analysis, and further mutagenesis studies suggested a high stability and structural constrain of the salt bridge, which serves to separate an adjacent structurally rigid signal patch, important for surface expression, from a flexible gating domain. Thus, we provide the first evidence of structural requirement that involves a stabilizing salt bridge and an exposed rigid signal patch at the destined extracellular loop for normal surface expression of ASICs. These findings will allow evaluation of new strategies aimed at preventing excessive excitability and neuronal injury associated with tissue acidosis and ASIC activation.  相似文献   

15.
The epithelial sodium channel (ENaC) is regulated by multiple extracellular stimuli, including shear stress. Previous studies suggest that the extracellular finger domains of ENaC α and γ subunits contain allosteric regulatory modules. However, the role of the finger domain in the shear stress response is unknown. We examined whether mutations of specific residues in the finger domain of the α subunit altered the response of channels to shear stress. We observed that Trp substitutions at multiple sites within the tract αLys-250-αLeu-290 altered the magnitude or kinetics of channel activation by shear stress. Consistent with these findings, deletion of two predicted peripheral β strands (αIle-251-αTyr-268) led to slower channel activation by shear stress, suggesting that these structures participate in the shear stress response. The effects of mutations on the shear stress response did not correlate with their effects on allosteric Na(+) inhibition (i.e. Na(+) self-inhibition), indicating a divergence within the finger domain regarding mechanisms by which the channel responds to these two external stimuli. This result contrasts with well correlated effects we previously observed at sites near the extracellular mouth of the pore, suggesting mechanistic convergence in proximity to the pore. Our results suggest that the finger domain has an important role in the modulation of channel activity in response to shear stress.  相似文献   

16.
Voltage-gated ion channels are transmembrane proteins that undergo complex conformational changes during their gating transitions. Both functional and structural data from K(+) channels suggest that extracellular and intracellular parts of the pore communicate with each other via a trajectory of interacting amino acids. No crystal structures are available for voltage-gated Na(+) channels, but functional data suggest a similar intramolecular communication involving the inner and outer vestibules. However, the mechanism of such communication is unknown. Here, we report that amino acid Ile-1575 in the middle of transmembrane segment 6 of domain IV (DIV-S6) in the adult rat skeletal muscle isoform of the voltage-gated sodium channel (rNa(V)1.4) may act as molecular switch allowing for interaction between outer and inner vestibules. Cysteine scanning mutagenesis of the internal part of DIV-S6 revealed that only mutations at site 1575 rescued the channel from a unique kinetic state ("ultra-slow inactivation," I(US)) produced by the mutation K1237E in the selectivity filter. A similar effect was seen with I1575A. Previously, we reported that conformational changes of both the internal and the external vestibule are involved in the generation of I(US). The fact that mutations at site 1575 modulate I(US) produced by K1237E strongly suggests an interaction between these sites. Our data confirm a previously published molecular model in which Ile-1575 of DIV-S6 is in close proximity to Lys-1237 of the selectivity filter. Furthermore, these functional data define the position of the selectivity filter relative to the adjacent DIV-S6 segment within the ionic permeation pathway.  相似文献   

17.
The transient receptor potential channel TRPV5 is localized to the apical membrane of the distal renal tubule and plays an important role in the regulation of transepithelial Ca2+ reabsorption in kidney. We have previously reported that extracellular protons inhibit TRPV5 by binding to glutamate-522 (E522) in the extracellular domain of the channel. We suggested that E522 is an extracellular “pH sensor” and its titration by extracellular protons inhibits TRPV5 via conformational change(s) of the pore helix. We now report that mutation of a pore helix residue glutamate-535 to glutamine (E535Q) enhances the sensitivity of the channel to inhibition by extracellular protons (i.e., shifting the apparent pKa for inhibition by extracellular protons to the more alkaline extracellular pH). The enhancement of extracellular proton-mediated inhibition of E535Q mutant is also dependent on E522. We have also reported that intracellular acidification enhances the sensitivity of TRPV5 to inhibition by extracellular protons. We now find that modulation of the extracellular proton-mediated inhibition by intracellular acidification is preserved in the E535Q mutant. These results provide further support for the idea that pore helix is involved in the regulation of TRPV5 by extracellular protons. Inhibition of TRPV5 by extracellular protons may contribute to hypercalciuria in diseases associated with high acid load.  相似文献   

18.
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.  相似文献   

19.
Acid-sensing ion channels (ASICs), which belong to the epithelial sodium channel/degenerin family, are activated by extracellular protons and are inhibited by amiloride (AMI), an important pharmacological tool for studying all known members of epithelial sodium channel/degenerin. In this study, we reported that AMI paradoxically opened homomeric ASIC3 and heteromeric ASIC3 plus ASIC1b channels at neutral pH and synergistically enhanced channel activation induced by mild acidosis (pH 7.2 to 6.8). The characteristic profile of AMI stimulation of ASIC3 channels was reminiscent of the channel activation by the newly identified nonproton ligand, 2-guanidine-4-methylquinazoline. Using site-directed mutagenesis, we showed that ASIC3 activation by AMI, but not its inhibitory effect, was dependent on the integrity of the nonproton ligand sensing domain in ASIC3 channels. Moreover, the structure-activity relationship study demonstrated the differential requirement of the 5-amino group in AMI for the stimulation or inhibition effect, strengthening the different interactions within ASIC3 channels that confer the paradoxical actions of AMI. Furthermore, using covalent modification analyses, we provided strong evidence supporting the nonproton ligand sensing domain is required for the stimulation of ASIC3 channels by AMI. Finally, we showed that AMI causes pain-related behaviors in an ASIC3-dependent manner. These data reinforce the idea that ASICs can sense nonproton ligands in addition to protons. The results also indicate caution in the use of AMI for studying ASIC physiology and in the development of AMI-derived ASIC inhibitors for treating pain syndromes.  相似文献   

20.
The factors determining the pH dependence of the formation and decay of the O photointermediate of the bacteriorhodopsin (bR) photocycle were investigated in the wild-type (WT) pigment and in the mutants of Glu-194 and Glu-204, key residues of the proton release group (PRG) in bR. We have found that in the WT the rate constant of O --> bR transition decreases 30-fold upon decreasing the pH from 6 to 3 with a pKa of about 4.3. D2O slows the rise and decay of the O intermediate in the WT at pH 3.5 by a factor of 5.5. We suggest that the rate of the O --> bR transition (which reflects the rate of deprotonation of the primary proton acceptor Asp-85) at low pH is controlled by the deprotonation of the PRG. To test this hypothesis, we studied the E194D mutant. We show that the pKa of the PRG in the ground state of the E194D mutant, when Asp-85 is protonated, is increased by 1.2 pK units compared to that of the WT. We found a similar increase in the pKa of the rate constant of the O --> bR transition in E194D. This provides further evidence that the rate of the O --> bR transition is controlled by the PRG. In a further test, the E194Q mutation, which disables the PRG and slows proton release, almost completely eliminates the pH dependence of O decay at pHs below 6. A second phenomenon we investigated was that in the WT at neutral and alkaline pH the fraction of the O intermediate decreases with pKa 7.5. A similar pH dependence is observed in the mutants in which the PRG is disabled, E194Q and E204Q, suggesting that the decrease in the fraction of the O intermediate with pKa ca. 7.5 is not controlled by the PRG. We propose that the group with pKa 7.5 is Asp-96. The slowing of the reprotonation of Asp-96 at high pH is the cause of the decrease in the rate of the N --> O transition, leading to the decrease in the fraction of O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号