首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named ‘maquis minier’, unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of ‘maquis minier’, in order to better understand the origin and past dynamics of New Caledonian biota.  相似文献   

2.
New Caledonia is a tropical hotspot of biodiversity with high rates of regional and local endemism. Despite offering an ideal setting to study the evolution of endemism, New Caledonia has received little attention compared with the other nearby hotspots, particularly New Zealand. Most studies of the Neocaledonian endemism have been carried out at the regional level, comparing the various groups and species present in New Caledonia but absent in neighboring territories. In addition, remarkably high short‐range endemism has been documented among plants, lizard and invertebrates, although these have usually been done, lacking a phylogenetic perspective. Most studies of Neocaledonian endemism have referred to the geological Gondwanan antiquity of the island and its metalliferous soils derived from ultramafic rocks. Very old clades are thought to have been maintained in refugia and diversified on the metalliferous soils. The present study documents the pattern of diversification and establishment of short‐range endemism in a phylogenetic context using the Neocaledonian cockroach genus Lauraesilpha. Mitochondrial and nuclear genes were sequenced to reconstruct phylogenetic relationships among the species of this genus. These relationships, in the light of the species distribution, do not support the hypothesis that species diversified via an adaptive radiation on metalliferous soils and are not consistent with areas of highest rainfall. Species of Lauraesilpha have similar altitudinal ranges and ecological habits and are short‐range endemics on mountains. What our analysis did reveal was that closely related species are found on nearby or contiguous mountains, and thus these formations probably played the key role establishing short‐range endemism (in association with recent climatic changes). © The Willi Hennig Society 2008.  相似文献   

3.
New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.  相似文献   

4.
5.
New Caledonia has generally been considered a continental island, the biota of which largely dates back to Gondwanan times owing to its geological origin and the presence of phylogenetic relicts. This view is contradicted by geological evidence indicating long Palaeocene and Eocene submersions and by recent biogeographic and phylogenetic studies, with molecular or geophysical dating placing the biota no older than the Oligocene. Phylogenetic relicts do not provide conclusive information in this respect, as their presence cannot be explained by simple hypotheses but requires assumption of many ad hoc extinction events. The implication of this new scenario is that all the New Caledonian biota colonized the island since 37 Ma Local richness can be explained by local radiation and adaptation after colonization but also by many dispersal events, often repeated within the same groups of organisms. Local microendemism is another remarkable feature of the biota. It seems to be related to recent speciation mediated by climate, orography, soil type and perhaps unbalanced biotic interactions created by colonization disharmonies. New Caledonia must be considered as a very old Darwinian island, a concept that offers many more fascinating opportunities of study.  相似文献   

6.
Aim A New Caledonian insect group was studied in a world‐wide phylogenetic context to test: (1) whether local or regional island clades are older than 37 Ma, the postulated re‐emergence time of New Caledonia; (2) whether these clades show evidence for local radiations or multiple colonizations; and (3) whether there is evidence for relict taxa with long branches in phylogenetic trees that relate New Caledonian species to geographically distant taxa. Location New Caledonia, south‐west Pacific. Methods We sampled 43 cricket species representing all tribes of the subfamily Eneopterinae and 15 of the 17 described genera, focusing on taxa distributed in the South Pacific and around New Caledonia. One nuclear and three mitochondrial genes were analysed using Bayesian and parsimony methods. Phylogenetic divergence times were estimated using a relaxed clock method and several calibration criteria. Results The analyses indicate that, under the most conservative dating scenario, New Caledonian eneopterines are 5–16 million years old. The largest group in the Pacific region dates to 18–29 Ma. New Caledonia has been colonized in two phases: the first around 10.6 Ma, with the subsequent diversification of the endemic genus Agnotecous, and the second with more recent events around 1–4 Ma. The distribution of the sister group of Agnotecous and the lack of phylogenetic long branches in the genus refute an assumption of major extinction events in this clade and the hypothesis of local relicts. Main conclusions Our phylogenetic studies invalidate a simple scenario of local persistence of this group in New Caledonia since 80 Ma, either by survival on the New Caledonian island since its rift from Australia, or, if one accepts the submergence of New Caledonia, by local island‐hopping among other subaerial islands, now drowned, in the region during periods of New Caledonian submergence.  相似文献   

7.
The world’s sole ‘parasitic’ gymnosperm Parasitaxus usta (Podocarpaceae) is endemic to the island of Grande Terre, New Caledonia. It is a threatened species because of its limited geographic range and progressing habitat fragmentation. Here, we report a novel scale insect outbreak on a Parasitaxus sub-population from Monts Dzumac in the southern part of Grande Terre. The identity of the scale insect was determined through combining morphological and molecular methods. The field collection of scale insects and their secretions from infested Parasitaxus specimens allowed morphological identification of the superfamily Coccoidea. Subsequent genetic sequencing using CO1 markers allowed phylogenetic placement of the wax scale insects to the genus Ceroplastes (Coccoidea, Coccidae), a widespread pest genus. The identified species, C. pseudoceriferus, has not been previously recorded from New Caledonia. As Parasitaxus is already vulnerable to extinction, this new threat to its long-term survival needs to be monitored. Other New Caledonian endemic plant species are potentially at risk of this new species, although it was not observed on Falcatifolium taxoides, the host of Parasitaxus.  相似文献   

8.
In area, New Caledonia is the smallest of the world’s 25 official biodiversity hotspots, but in many taxonomic groups, the island has the highest concentration of species on earth, particularly so in the freshwater insect order Trichoptera. This study aims at applying molecular data and morphology for estimating the real species diversity of the genus Agmina on New Caledonia and investigating potential effects of ultramafic rock substrate on diversification. A dated molecular phylogeny was applied to study diversity and diversification related to geological substrate using the dispersal–extinction–cladogenesis model, diva and Bayesian ancestral character reconstruction. More than 47 species (> 63%) were unknown to science. Initial radiation occurred on ultramafic substrate followed by several independent dispersal events to nonultramafic substrate. The rate of shift from ultramafic to nonultramafic substrate was significantly higher than the rate of shift in the opposite direction, indicating a possible cost associated with living on ultramafic substrate.  相似文献   

9.
Halimeda is a genus of calcified and segmented green macroalgae in the order Bryopsidales. In New Caledonia, the genus is abundant and represents an important part of the reef flora. Previous studies recorded 19 species that were identified using morphological criteria. The aim of this work was to reassess the diversity of the genus in New Caledonia using morpho‐anatomical examinations and molecular analyses of the plastid tufA and rbcL genes. Our results suggest the occurrence of 22 species. Three of these are reported for the first time from New Caledonia: Halimeda kanaloana, H. xishaensis, and an entity resembling H. stuposa. DNA analyses revealed that the species H. fragilis exhibits cryptic or pseudocryptic diversity in New Caledonia. We also show less conclusive evidence for cryptic species within H. taenicola  相似文献   

10.
A previously unknown Annonaceae species from the South Pacific island of New Caledonia is described as Goniothalamus dumontetii . This is the first Goniothalamus species reported from the island, and the easternmost record for the genus. It is easily distinguished from its congeners by the shape of the monocarp (flattened elongate with lateral triangular projections), which reflects the shape of the seeds (flattened rhombohedral). The conservation status of the species is evaluated as endangered (EN) using World Conservation Union (IUCN) red list categories, as it is known from only one relatively small population. The interpretation of geological and molecular data suggests that Goniothalamus dispersed to New Caledonia relatively recently, and does not represent a relict of the break-up of Gondwana.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 497–503.  相似文献   

11.
The diversity of the Frankia strains that are naturally in symbiosis with plants belonging to the Gymnostoma genus in New Caledonia was investigated. A direct molecular characterization of DNA extracted from nodules was performed, followed by characterization by restriction fragment length polymorphism (RFLP) of the ribosomal rrs-rrl (16S-23S) intergenic spacer (IGS) polymerase chain reaction (PCR)-amplified region. Seventeen different patterns were identified among the 358 microsymbiotic strains studied in the eight species of host plant present in New Caledonia. This genotypical approach permitted us to show that a large diversity existed among the patterns and that these did not exhibit a strict specificity to any host-plant species comparable with that previously found in the Casuarina and Allocasuarina symbioses in Australia. Despite this lack of specificity, a correspondence analysis nevertheless showed that the distribution of these patterns was related to soil type and to host-plant species. Furthermore, several Frankia strains were exclusively associated with the ultramafic soils.  相似文献   

12.
The first mammalian remain ever found in NewCaledonia is an upper tooth found by golddiggers in the Plio-Pleistocene terrace from the Diahot river. This tooth, given to the Muséum national d'Histoire naturelle (Paris) in 1876, was determined as a rhinoceros tooth and then completely forgotten. Its detailed study shows that it belongs to Zygomaturus, a large marsupial diprotodontid genus whose story is rather complicated. The Diahot tooth represents a new species of Zygomaturus, Z. diahotensis nov. sp., close to Z. trilobus from the Australian Pleistocene. That kinship suggests a Plio-Pleistocene land connection between Australia and New Caledonia, whereas till now New Caledonia was supposed to be separated from Australia since the end of the Cretaceous, because of the total absence of indigenous mammals, fossil or recent, in New Caledonia. The latest geological studies in the East Pacific do not contradict our hypothesis.  相似文献   

13.
Species identification is fundamental to address questions about community ecology, biodiversity, conservation and resource management, at any life history stage. Current studies on fish larval ecology of tropical species are hampered by the lack of reliable and effective tools for identifying larvae at the species level. Emperors and large-eye breams comprise fish species from the perciform fish family Lethrinidae. They inhabit coastal and coral-reef habitats of the tropical Indo-Pacific, and they are important fishery resources. Their taxonomy is considered difficult and identification to species is often problematic. Lethrinidae larvae and juveniles can be identified on the basis of meristic counts at the sub-family level, but no further. In this study, we developed a set of polymorphic PCR markers (size polymorphisms at the intron regions from 4/5 nuclear protein-coding genes and single-strand conformation polymorphism of a 205-bp fragment at the mitochondrial 16S rRNA locus), to characterize 341 specimens from 21 Lethrinidae species from New Caledonia (southwestern tropical Pacific). A genetic data-bank was constructed using the genotypes screened from the multiple gene loci of adult or sub-adult specimens used as references for these species. The 16S rRNA gene fragment was able to differentiate species for the genus Lethrinus, but it provided little diagnostic resolution among different species within the genus Gymnocranius. A combination of the 16S rRNA marker and 4 nuclear markers developed herein allowed to sort out species within Gymnocranius spp. from New Caledonia. Using genotype distributions at nuclear loci to test for reproductive isolation, we found that three apparently undescribed large-eye bream species may exist, provisionally referred to as Gymnocranius sp. A, sp. B and sp. C. Subsequent genotyping of 137 Lethrinidae larvae collected from the bays of the Noumea peninsula, New Caledonia, found a total of three species (Lethrinus genivittatus, Lethrinus olivaceus and Gymnocranius sp. A).  相似文献   

14.
15.
New Caledonia is well known as a hot spot of biodiversity whose origin as a land mass can be traced back to the Gondwanan supercontinent. The local flora and fauna, in addition to being remarkably rich and endemic, comprise many supposedly relictual groups. Does the New Caledonian biota date back to Gondwanan times, building up its richness and endemism over 100 Myr or does it result from recent diversifications after Tertiary geological catastrophic events? Here we use a molecular phylogenetic approach to answer this question with the study of the Neocaledonian cockroach genus Angustonicus belonging to the subfamily Tryonicinae from Australia and New Caledonia. Both geological and molecular dating show that the diversification of this group is less than two million years old, whatever the date of its origin itself. This dating is not consistent with hypotheses of Gondwanan richness and endemism in New Caledonian biota. In other terms, local richness and endemism at the specific level are not necessarily related to an old Gondwanan origin of the Neocaledonian groups. © The Willi Hennig Society 2005.  相似文献   

16.
We present a molecular phylogenetic analysis of 2808 aligned bp of rrnL, cox1, cob, H3 and 18S rRNA of all major morphological groups of Papuadytes diving beetles (Coleoptera: Dytiscidae) which are diverse in running water habitats throughout the Australian region. We focus on the origin of the fauna of the megadiverse islands of New Guinea and New Caledonia. Parsimony as well as Bayesian analyses suggest a basal position of Australian species in a paraphyletic series, with more recent nested radiations in New Caledonia and New Guinea. According to molecular clock analyses, both landmasses were colonized during the Miocene, which matches geological data and corroborates similar findings in other taxonomic groups. Our analyses suggest that dispersal played an important role in the formation of these large insular faunas, although successful colonization appears to be a rare event, and, in this case, is unidirectional. Whether or not a lineage is present on an island is due to chance: Papuadytes are absent from Fiji, where related Copelatus have radiated extensively in the same habitats occupied by Papuadytes in New Caledonia and New Guinea, while Copelatus are absent from New Caledonia. Lineages of Papuadytes apparently colonized New Caledonia twice, around 14 and 9 MYA according to the molecular calibration, and both lineages are derived from an Australian ancestor. The older clade is represented only by two apparently relictual mountain species (one morphologically strongly adapted to highly ephemeral habitats), while the younger clade contains at least 18 species exhibiting a great morphological diversity. The 150+ species in New Guinea are monophyletic, apparently derived from an Australian ancestor, and constitute a morphologically rather homogenous group. The tree backbone remains insufficiently supported under parsimony and Bayesian analyses, where shorter branches suggest a rapid sequence of major branching events.  相似文献   

17.
Rhizobia are soil bacteria able to develop a nitrogen-fixing symbiosis with legumes. They are taxonomically spread among the alpha and beta subclasses of the Proteobacteria. Mimosa pudica, a tropical invasive weed, has been found to have an affinity for beta-rhizobia, including species within the Burkholderia and Cupriavidus genera. In this study, we describe the diversity of M.?pudica symbionts in the island of New Caledonia, which is characterized by soils with high heavy metal content, especially of Ni. By using a plant-trapping approach on four soils, we isolated 96 strains, the great majority of which belonged to the species Cupriavidus taiwanensis (16S rRNA and recA gene phylogenies). A few Rhizobium strains in the newly described species Rhizobium mesoamericanum were also isolated. The housekeeping and nod gene phylogenies supported the hypothesis of the arrival of the C.?taiwanensis and R.?mesoamericanum strains together with their host at the time of the introduction of M.?pudica in New Caledonia (NC) for its use as a fodder. The C.?taiwanensis strains exhibited various tolerances to Ni, Zn and Cr, suggesting their adaptation to the specific environments in NC. Specific metal tolerance marker genes were found in the genomes of these symbionts, and their origin was investigated by phylogenetic analyses.  相似文献   

18.
New comments are proposed on the geographic distribution of genus Opisthacanthus, and the Gondwanian model is further supported. The diversity of the genus is extraordinary in Madagascar, with the same number of species as in continental Africa, but sub-Saharan Africa is home to six out of the nine groups currently recognized of Opisthacanthus. Given the affinities of the Opisthacanthus groups and their current distribution, a center of origin in Africa could be favored for these ancient scorpions. The proposed Gondwana model suggests that the Madagascar Opisthacanthus are closer to those of the New World, which is consistent with the affinities observed in morphological characters. A new species, Opisthacanthus titanus sp. n., is described from the Torotorofotsy Forest, located in Eastern Madagascar. The new species shows affinities with both Opisthacanthus madagascariensis Kraepelin, 1894 known from dry regions in the western portion of the island and Opisthacanthus lavasoa Lourenço, Wilmé & Waeber, 2016 only known from the extreme southeast of the island. The new species and O. madagascariensis have similar external morphologies but the morphometric values are markedly distinct. Moreover, O. madagascariensis is exclusively found in spiny forest thickets and open woodlands, whereas the new species was found in the humid forest of Torotorofotsy. The total number of species in Madagascar is now raised to twelve. Biogeographical scenarios are also proposed to infer the origin of the Opisthacanthus and better understand its distribution in the New World, in Africa and Madagascar.  相似文献   

19.
We reconstructed the evolutionary history of Codia , a plant genus endemic to the New Caledonia biodiversity hotspot in the southwest Pacific, using three single-copy nuclear genes. It seems likely that more than half of Codia species have a hybrid origin, but in the absence of cytological information, it is not known whether polyploids occur. Adaptation to ultramafic soils is possibly a plesiomorphic character for the entire genus. We found that species of hybrid origin can have some morphological characters absent in putative parental species, that is, they exhibit transgressive phenotypes. There is evidence of considerable range alteration post-origin in several species because some likely parental species of hybrid taxa no longer co-occur and are confined to putative rainforest refugia; in some cases, hybrid species do not now co-occur with either of their parental species. These results have implications for the design of conservation strategies, for example, prioritization of parental species for ex-situ conservation and preservation of the contact zones between soil types where hybridization is more likely to occur (i.e. conserving the possibility for the process to continue rather than trying to conserve taxa).  相似文献   

20.
Four new species of arbuscular mycorrhizal (AM) fungi (Glomeromycota) were isolated from the rhizosphere of endemic metallophytic plants in ultramafic soils in New Caledonia (South Pacific) and propagated on Sorghum vulgare. Acaulospora saccata and A. fragilissima are placed in the Acaulosporaceae, Scutellospora ovalis in the Gigasporaceae, and Rhizophagus neocaledonicus in the Glomeraceae. The novelty of these species is supported by morphological characters of spores and phylogenetic analyses of sequences of the rDNA region, comprising partial small subunit rRNA gene, the internal transcribed spacers, 5.8S rRNA gene, and the partial large subunit rRNA gene. New Caledonia is known for its high degree of endemism in plants, which is due to its geographic position and geological history. This is the first taxonomic study exploring local Glomeromycota of this island, which may help to address the question of possible AMF endemism in future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号