首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves.  相似文献   

2.
This study reports the experimental findings and plasma delivery approach developed at the Plasma Bioscience Research Center, Korea for the assessment of antitumor activity of dielectric barrier discharge (DBD) for cancer treatment. Detailed investigation of biological effects occurring after atmospheric pressure non-thermal (APNT) plasma application during in vitro experiments revealed the role of reactive oxygen species (ROS) in modulation of the antioxidant defense system, cellular metabolic activity, and apoptosis induction in cancer cells. To understand basic cellular mechanisms, we investigated the effects of APNT DBD plasma on antioxidant defense against oxidative stress in various malignant cells as well as normal cells. T98G glioblastoma, SNU80 thyroid carcinoma, KB oral carcinoma and a non-malignant HEK293 embryonic human cell lines were treated with APNT DBD plasma and cellular effects due to reactive oxygen species were observed. Plasma significantly decreased the metabolic viability and clonogenicity of T98G, SNU80, KB and HEK293 cell lines. Enhanced ROS in the cells led to death via alteration of total antioxidant activity, and NADP+/NADPH and GSH/GSSG ratios 24 hours (h) post plasma treatment. This effect was confirmed by annexin V-FITC and propidium iodide staining. These consequences suggested that the failure of antioxidant defense machinery, with compromised redox status, might have led to sensitization of the malignant cells. These findings suggest a promising approach for solid tumor therapy by delivering a lethal dose of APNT plasma to tumor cells while sparing normal healthy tissues.  相似文献   

3.
Aims: Dielectric barrier discharge (DBD) plasma is used for sterilization of contaminated inanimate surfaces but seldomly optimized and depends upon the type of organisms and the plasma treatment duration, (net energy deposited) this efficacy varies. The proposed study was designed to see biological responses of one of the robust organism, Bacillus stratosphericus. Methods and Results: DBD plasma was applied over various durations to B. stratosphericus either surface‐dried or suspension in de‐ionized water, and viability, culturability, and viable but nonculturability (VBNC) were assayed using standard techniques. Depending upon the exposure of B. stratosphericus to DBD plasma resulted in three viability states, viable and culturable at low plasma doses and VBNC or disintegrated bacteria at higher plasma doses. Although organism’s respiration levels at relatively low levels, immediately after plasma treatment, over the course of 24‐ h respiratory activity was increased c. eight times (and found still nonculturable during colony assays). Conclusions: The loss of culturability is hypothesized to be induced as one of the responses to oxidative stress and it remains to be unclear if the response is temporary or indefinite. Appropriate plasma powers should be used to avoid VBNC‐like status. 2,3‐Bis‐(2‐methoxy‐4‐nitro‐5‐sulfophenyl)‐2H‐tetrazolium‐5‐carboxanilide (XTT) assay is a good alternative method to detect VBNC state. Significance and Impact of the Study: Bacillus stratosphericus has the potential to turn into VBNC upon plasma application, and XTT assay can be an alternative method to detect VBNC state.  相似文献   

4.
Macrophage polarization plays an important role in many macrophage-related diseases. This study was designed to preliminarily explore the effects of dielectric barrier discharge (DBD) plasma on the polarization direction and cell activity of macrophages with different phenotypes (ie, M0, M1, and M2). The M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker cluster of differentiation 206 (CD206) were detected by western blot (WB). The effects of DBD plasma on macrophage viability were analyzed by using a cell counting kit-8 detection kit. M0, M1, and M2 macrophages exhibited a decrease in iNOS expression and an increase in CD206 expression after the DBD plasma intervention. Additionally, the decrease in macrophage viability remained non-significant after initiating the intervention. DBD plasma can promote the transformation of M0 and M1 macrophages to M2 macrophages, and can further enhance the expression of the M2 macrophage phenotype marker CD206. Our study not only demonstrates the potential therapeutic value of DBD plasma for macrophage-related diseases, but it also provides a new direction for research to improve the treatment of macrophage-related diseases. © 2023 Bioelectromagnetics Society.  相似文献   

5.
Plasma Physics Reports - Inactivation of spore microorganisms on a dielectric surface by a dielectric barrier discharge with plane electrodes was studied experimentally. It is shown that, at an...  相似文献   

6.
The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal “cold” atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 μl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 μM), nitrate (~1 mM) and H2O2 (~200 μM). Fibroblast viability was reduced by single DBD treatments (60–300 s; ~77–66%) or exposure to freshly DBD-treated PBS (60–300 s; ~75–55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well-balanced in order to avoid possible unwanted side effects such as a delayed healing process.  相似文献   

7.
Experimental results on the radial distribution of the nanosecond dielectric barrier discharge (DBD) current in flat millimeter air gaps under atmospheric pressure and natural humidity of 40–60% at a voltage rise rate at the electrodes of 250 V/ns are presented. The time delay of the appearance of discharge currents was observed to increase from the center to the periphery of the air gap at discharge gap heights above 3 mm, which correlated with the appearance of constricted channels against the background of the volume DBD plasma. Based on the criterion of the avalanche-streamer transition, it is found out that the development of a nanosecond DBD in air gaps of 1–3 mm occurs by the streamer mechanism.  相似文献   

8.
以茂源链轮丝菌(Streptoverticillium mobaraense)03-10为出发菌株,采用一种新型的裸露电极大气压辉光放电的冷等离子体技术对链霉菌孢子进行诱变。根据双层平板法菌落显色及诱变处理后菌落形态差异快速筛选谷氨酰胺转胺酶高产突变株。突变率、正突变率分别达到42.8%和20.6%。最后复筛选育出具有较好遗传稳定性和形态稳定性的高产突变株G2-1,酶活达到2.73U/mL,比出发菌株提高了82%。  相似文献   

9.
Inositol phospholipid metabolism during mitogen-induced Schwann cell proliferation has been examined. Addition of axolemma- and myelin-enriched membrane fractions (AXL and MYE, respectively) to cultured Schwann cells stimulated 32P incorporation into phosphatidylinositol 4-monophosphate [PtdIns(4)P] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. During the first 5 min of incubation with the mitogens, the amount of 32P incorporated into PtdIns(4)P and PtdIns(4,5)P2 was four- to fivefold above control values. The phosphorylation of the inositol phospholipids was dependent on the concentration of membrane mitogens and was maximal within 1 h. Schwann cells that were prelabeled with [3H]glycerol and then stimulated with AXL and MYE displayed a 30-70% increase in the amounts of [3H]PtdIns(4)P and [3H]PtdIns(4,5)P2 and a 60-80% increase in the amount of [3H]phosphatidic acid. A concomitant 20% decrease in the content of [3H]PtdIns was observed after stimulation. These results suggest that the increased metabolism of PtdIns, PtdIns(4)P, and PtdIns(4,5)P2 may be one of the initial molecular events in the transduction of the mitogenic signal across the Schwann cell plasma membrane.  相似文献   

10.
Vertebrate skeletal differentiation retains elements from simpler phyla, and reflects the differentiation of supporting tissues programmed by primary embryonic development. This developmental scheme is driven by homeotic genes expressed in sequence, with subdivision of skeletal primordia driven by a combination of seven transmembrane‐pass receptors responding to Wnt‐family signals, and by bone morphogenetic family signals that define borders of individual bones. In sea‐dwelling vertebrates, an essentially complete form of the skeleton adapted by the land‐living vertebrates develops in cartilage, based on type II collagen and hydrophilic proteoglycans. In bony fishes, this skeleton is mineralized to form a solid bony skeleton. In the land‐living vertebrates, most of the skeleton is replaced by an advanced vascular mineralized skeleton based on type I collagen, which reduces skeletal mass while facilitating use of skeletal mineral for metabolic homeostasis. Regulation of the mammalian skeleton, in this context, reflects practical adaptations to the needs for life on land that are related to ancestral developmental signals. This regulation includes central nervous system regulation that integrates bone turnover with overall metabolism. Recent work on skeletal development, in addition, demonstrates molecular mechanisms that cause developmental bone diseases.  相似文献   

11.
A new method for on-spot detection and characterization of organic compounds resolved on thin layer chromatography (TLC) plates has been proposed. This method combines TLC with dielectric barrier discharge ionization (DBDI), which produces stable low-temperature plasma. At first, the compounds were separated on TLC plates and then their mass spectra were directly obtained with no additional sample preparation. To obtain good quality spectra the center of a particular TLC spot was heated from the bottom to increase volatility of the compound. MS/MS analyses were also performed to additionally characterize all analytes. The detection limit of proposed method was estimated to be 100 ng/spot of compound.  相似文献   

12.
13.
Continuous experiments were conducted to evaluate the electrolytic performance of a novel 3‐dimensional electrolytic cell consisting of granular Pt/Ti electrodes. The electric current efficiency to decompose indigotrisulfonate was approx. 96 %, while energy consumption was one to two orders of magnitude smaller than that for O3 treatment. Furthermore, the cell was successfully applied to treat trace endocrine disrupting chemicals (EDCs) and chlorinated compounds. Energy consumption was in the range of 2 to 10 Wh/m3. From these results, it was concluded that the present electrolytic cell would be a feasible alternative to conventional oxidation processes in water treatment.  相似文献   

14.
15.
16.
17.
18.
Neural cell adhesion molecule 140 (NCAM-140) is a glycoprotein and always highly polysialylated in cancer. Functions of polysialic acid (PSA) that binds to N-glycan termini on NCAM remain unclear. ldlD-14 cells, a CHO cell mutant deficient in UDP-Gal 4-epimerase, are useful for structural and functional studies of Gal-containing glycoproteins because their abnormal glycosylation can be converted to normal status by exogenous addition of galactose (Gal). We cloned the genes for NCAM-140 and for polysialyltransferases STX and PST (responsible for PSA synthesis) from normal murine mammary gland epithelial (NMuMG) cells and transfected them into ldlD-14 and human breast cancer cells MCF-7. The effect of PSA on NCAM-mediated cell proliferation, motility, migration and adhesion was studied. We found that NCAM-140 significantly promoted cell proliferation, motility and migration, while polysialylation of NCAM-140 catalyzed by STX, but not by PST, enhanced NCAM-mediated cell migration, but not cell proliferation or motility. In addition, PSA catalyzed by different polysialyltransferases affected the adhesion of NCAM to different extracellular matrix (ECM) components.  相似文献   

19.
20.
Loss of PTPN11/SHP2 in mice or in human metachondromatosis (MC) patients causes benign cartilage tumors on the bone surface (exostoses) and within bones (enchondromas). To elucidate the mechanisms underlying cartilage tumor formation, we investigated the role of SHP2 in the specification, maturation and organization of chondrocytes. Firstly, we studied chondrocyte maturation by performing RNA-seq on primary chondrocyte pellet cultures. We found that SHP2 depletion, or inhibition of the ERK1/2 pathway, delays the terminal differentiation of chondrocytes from the early-hypertrophic to the late-hypertrophic stage. Secondly, we studied chondrocyte maturation and organization in mice with a mosaic postnatal inactivation of Ptpn11 in chondrocytes. We found that the vertebral growth plates of these mice have expanded domains of early-hypertrophic chondrocytes that have not yet terminally differentiated, and their enchondroma-like lesions arise from chondrocytes displaced from the growth plate due to a disruption in the organization of maturation and ossification zones. Furthermore, we observed that lesions from human MC patients also display disorganized chondrocyte maturation zones. Next, we found that inactivation of Ptpn11 in Fsp1-Cre-expressing fibroblasts induces exostosis-like outgrowths, suggesting that loss of SHP2 in cells on the bone surface and at bone-ligament attachment sites induces ectopic chondrogenesis. Finally, we performed lineage tracing to show that exostoses and enchondromas in mice likely contain mixtures of wild-type and SHP2-deficient chondrocytes. Together, these data indicate that in patients with MC, who are heterozygous for inherited PTPN11 loss-of-function mutations, second-hit mutations in PTPN11 can induce enchondromas by disrupting the organization and delaying the terminal differentiation of growth plate chondrocytes, and can induce exostoses by causing ectopic chondrogenesis of cells on the bone surface. Furthermore, the data are consistent with paracrine signaling from SHP2-deficient cells causing SHP2-sufficient cells to be incorporated into the lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号