首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This study involves an investigation on the probiotic properties of lactic acid bacteria and their potential applications in an in vitro model of lipopolysaccharide (LPS)-stimulated inflammation and dexamethasone-induced osteoporosis. Nine strains were pre-screened from 485 lactic acid bacteria based on their survival at a low pH and in a solution containing bile salts. All candidates were capable of surviving in an environment with low pH and with bile salts and could successfully colonize the intestine. Furthermore, their functional properties, such as anti-oxidation and anti-inflammation, were evaluated. Of the nine probiotic candidates, Lactobacillus plantarum A41 and L. fermentum SRK414 exhibited the highest anti-oxidative capacity. Moreover, only L. plantarum A41 and L. fermentum SRK414 could increase gut barrier function by upregulating the mRNA expression of tight junction proteins and inhibit the expression of inflammatory mediators induced by LPS-stimulated inflammation. Interestingly, these two strains were also capable of regulating several bone metabolism-related markers playing a role in bone homeostasis and osteoblast differentiation. In brief, L. plantarum A41 and L. fermentum SRK414 exhibited high probiotic potential and potentially impact immune-related bone health by modulating pro-inflammatory cytokines and bone metabolism-related markers.

  相似文献   

2.
Lactic acid bacteria from healthy breast-fed infants were isolated and screened for β-galactosidase production in MRS broth. Among 49 isolates that exhibited the yellow clear zone on MRS agar supplemented with bromocresol blue, the isolate CM33 was selected as being the highest β-galactosidase producer and was identified as Lactobacillus fermentum based on its morphological characteristics and 16S rDNA nucleotide sequence. L. fermentum CM33 exhibited a good survival rate under the simulated stomach passage model, comparable to known probiotic strains L. gallinarum JCM2011 and L. agilis JCM1187. L. fermentum CM33 was antagonistic to pathogenic bacteria Listeria monocytogenes, Escherichia coli 0157:H7, Salmonella typhi, and Salmonella enteriditis, using the well diffusion method. In addition, the selected lactobacilli exhibited a high growth rate when cultivated in modified MRS containing commercial galactooligosaccharide (GOS) as a sole carbon source, as well as in glucose. A preliminary study on the enzymatic synthesis of oligosaccharide using crude β-galactosidase revealed the capability for oligosaccharide synthesis by the transgalactosylation activity.  相似文献   

3.

The aim of this study was to assess the protective effect of the intracellular content obtained from potential probiotic bacteria against acrylamide-induced oxidative damage in human erythrocytes. First, the antioxidant properties of 12 potential probiotic strains was evaluated. Two commercial probiotic bacteria were included as reference strains, namely, Lactobacillus casei Shirota and Lactobacillus paracasei 431. Data showed that the intracellular content from four strains, i.e., Lactobacillus fermentum J10, Lactobacillus pentosus J24 and J26, and Lactobacillus pentosus J27, showed higher (P < 0.05) antioxidant capacity in most methods used. Thereafter, the intracellular content of such pre-selected strains was able to prevent the disturbance of the antioxidant system of human erythrocytes exposed to acrylamide, thereby reducing cell disruption and eryptosis development (P < 0.05). Additionally, the degree of oxidative stress in erythrocytes exposed to acrylamide was significantly (P < 0.05) reduced to levels similar to the basal conditions when the intracellular content of Lact. fermentum J10, Lact. pentosus J27, and Lact. paracasei 431 were employed. Hence, our findings suggest that the intracellular contents of specific Lactobacillus strains represent a potential source of metabolites with antioxidant properties that may help reduce the oxidative stress induced by acrylamide in human erythrocytes.

  相似文献   

4.
The green microalga Botryococcus braunii (B. braunii), race B, was cultured under light-emitting diode (LED) irradiation with and without violet light. This study examined the effect of violet light on hydrocarbon recovery and production in B. braunii. C34 botryococcene hydrocarbons were efficiently extracted by thermal pretreatments at lower temperatures when the alga was cultured without violet light. The hydrocarbon content was also higher (approximately 3%) in samples cultured without violet light. To elucidate the mechanism of effective hydrocarbon recovery and production, we examined structural components of the extracellular matrix (ECM). The amounts of extracellular carotenoids and water-soluble polymers extracted by thermal pretreatment from the ECM were decreased when the alga was cultured without violet light. These results indicate that LED irradiation without violet light is more effective for hydrocarbon recovery and production in B. braunii. Furthermore, structural ECM components are closely involved in hydrocarbon recovery and production in B. braunii.  相似文献   

5.

Information regarding cellular anti-senescence attributes of probiotic bacteria vis-à-vis modulation of senescence-associated secretory phenotype (SASP) and mTOR signaling is very limited. The present study assessed anti-senescence potential of secretory metabolites of probiotic Lactobacillus fermentum (Lact. fermentum) using H2O2-induced model of senescence in 3T3-L1 preadipocytes. Application of H2O2-induced cellular senescence characterized by increased cell size and SA-β-gal activity, activation of SASP and reactive oxygen species (ROS), DNA damage response and induction of cell cycle inhibitors (p53/p21WAF1/p16INK4a). Further, a robust stimulation of the PI3K/Akt/mTOR pathway and AMPK signaling was also observed in H2O2-treated cells. However, exposure of cells to cell-free supernatant of Lact. fermentum significantly attenuated phosphorylation of PI3K/Akt/mTOR pathway and alleviated senescence markers p53, p21WAF1, SA-β-gal, p38MAPK, iNOS, cox-2, ROS, NF-κB, and DNA damage response. These results provide evidence that secretory metabolites of Lact. fermentum can mitigate the development as well as severity of stress-induced senescence thereby indicating its utility for use as anti-aging or age-delaying agent.

  相似文献   

6.
The adhesion to whole and fractionated porcine gastric mucus of both Lactobacillus fermentum 104-S cells and a saccharide extracted from this strain was investigated. It has been shown previously that this saccharide had affinity for nonsecreting gastric epithelium. The mucus component(s) with affinity the bacterial cells was partly characterized by gel filtration and treatment with protease or metaperiodate. L. fermentum 104-S extracts containing the saccharide were radioactively labeled, fractionated by gel filtration, and tested for affinity for the gastric mucus component showing receptor activity for the whole cells of strain 104-S. The mucus material with affinity for the bacterial cells had a relative molecular weight of 30–70 K. From the results of treatment with protease or metaperiodate, it is proposed that the mucus components(s) that adhered to the whole bacterial cells contained glycoprotein groups. The radioactively labeled saccharide extracted from L. fermentum 104-S cells did not bind to the mucus fraction that had affinity for the whole cells. Conclusively, we suggest that the mechanism by which cells of L. fermentum 104-S adhere to the gastric mucus is different from the mechanism mediating the adhesion of this strain to the nonsecreting gastric epithelium. Cells of L. fermentum 104-S adhere to a glycoproteinaceous mucus component with a relative molecular weight of 30–70 K. Received: 29 August 1995 / Accepted: 26 December 1995  相似文献   

7.
The crystalline surface layer (S-layer) protein (SLP) of Rickettsia typhi is known as the protective antigen against murine typhus. We previously reported a cloning and sequence analysis of the SLP gene of R. typhi (slpT) and showed that the open reading frame of this gene encodes both the SLP and a 32-kDa protein. To express only the SLP from this gene, the putative signal sequence and the 32-kDa protein portion were removed from the slpT. This protein was expressed in Escherichia coli as a fusion protein, consisting of the SLP and maltose binding protein. The recombinant protein reacted strongly with polyclonal antiserum of a patient with murine typhus.  相似文献   

8.
The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut‐related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco‐2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n = 15], Lactobacillus rhamnosus [n = 45], Lactobacillus gasseri [n = 20] and Lactobacillus fermentum [n = 18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco‐2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non‐adjusted cell‐free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic.  相似文献   

9.

Thirty-four isolates of Lactobacillus spp. (LAB) from 34 curd samples were evaluated for their aflatoxin B1 (AFB1) binding and probiotic properties. Upon characterization, four LAB isolates (LC3/a, LC4/c, LC/5a, and LM13/b) were found to be effective in removing AFB1 from culture media with a capacity of above 75%. Staining reaction, biochemical tests, pattern of sugar utilization, and 16s rRNA gene sequence analysis revealed the identity of all the four isolates as L. fermentum. All of them could tolerate acidic pH, salt, and bile, which promise the use of these probiotic bacterial isolates for human applications. These isolates showed poor hydrophobicity and higher auto-aggregation properties. All L. fermentum isolates were found susceptible to gentamycin, chloramphenicol, cefoperazone, ampicillin, and resistant to ciprofloxacin and vancomycin. Results of hemolytic and DNase activity indicated their nonpathogenic nature. Though all L. fermentum isolates found inhibiting the growth of Salmonella ebony, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, maximum inhibition was obtained with isolate LC5/a. Kinetic studies revealed that all four bacteria required a minimum of 2 h to reach stationary phase of AFB1 binding. AFB1 binding ability varied from 66 to 85.2% among these four isolates. Bile (0.4%) was significant (P ≤ 0.05) in reducing the AFB1 binding property of isolates LC3/a, LC4/c, and LM13/b, while increased AFB1 binding ability was recorded at acidic pH (2.0). AFB1 binding properties of isolate LC5/a were found least affected by acidic pH and bile. The findings of our study revealed the higher efficiency of L. fermentum isolate LC5/a in reducing the bioavailability of AFB1 in gut, and additionally, it improves the consumers’ health by its various probiotic characters. These beneficial characters, L. fermentum isolates, promise them to use as probiotic formulations alone or in combinations with other beneficial probiotic-bacterial isolates.

  相似文献   

10.
Aims: To identify and characterize adhesion‐associated proteins in the potential probiotic Lactobacillus fermentum BCS87. Methods and Results: Protein suspensions obtained from the treatment of Lact. fermentum BCS87 with 1 mol 1?1 LiCl were analysed by Western blotting using HRP‐labelled porcine mucus and mucin. Two adhesion‐associated proteins with relative molecular weight of 29 and 32 kDa were identified. The N‐terminal and internal peptides of the 32 kDa protein (32‐Mmubp) were sequenced, and the corresponding gene (32‐mmub) was found by inverse polymerase chain reaction. The complete nucleotide sequence of 32‐mmub revealed an open reading frame of 903 bp encoding a primary protein of 300 amino acids and a mature protein of 272 residues. A basic local alignment search showed 47–99% identity to solute‐binding components of ATP binding cassette transporter proteins in Lactobacillus, Streptococcus and Clostridium. An OpuAC‐conserved domain was identified and phylogenetic relationship analysis confirmed that 32‐Mmubp belongs to the OpuAC family. Conclusions: Adhesion of Lact. fermentum BCS87 appeared to be mediated by two surface‐associated proteins. 32‐Mmubp is a component of ABC transporter system that also functions as an adhesin. Significance and Impact of the Study: Characterization of 32‐Mmubp and 32‐mmub will contribute to understanding the host–bacteria interactions of Lact. fermentum with the intestinal tract of pigs.  相似文献   

11.
Biofilm‐forming bacteria embedded in polymeric extracellular matrices (ECMs) that consist of polysaccharides, proteins and/or extracellular DNAs (eDNAs) acquire high resistance to antimicrobial agents and host immune systems. To understand molecular mechanisms of biofilm formation and maintenance and to develop therapeutic countermeasures against chronic biofilm‐associated infections, reliable methods to isolate ECMs are inevitable. In this study, we refined the ECM extraction method recently reported and evaluated its applicability. Using three Staphylococcus aureus biofilms in which proteins, polysaccharides or eDNAs are major contributors to their integrity, ECMs were extracted using salts and detergents. We found that extraction with 1.5 M sodium chloride (NaCl) could be optimum for not only ECM proteins but also polysaccharides and eDNAs. In addition, long‐time incubation was not necessary for efficient ECM isolation. Lithium chloride (LiCl) was comparative to NaCl but is more expensive. In contrast to SDS, NaCl hardly caused leakage of intracellular proteins and did not affect viability of bacterial cells within biofilms. Furthermore, this method is applicable to other bacteria such as Gram‐positive Staphylococcus epidermidis and Gram‐negative Escherichia coli and Pseudomonas aeruginosa. Thus, this refined method is very simple, rapid, low cost and non‐invasive and could be used for a broad range of applications.  相似文献   

12.

Heat-killed lactic acid bacteria perform immunomodulatory functions and are advantageous as probiotics, considering their long product shelf-life, easy storage, and convenient transportation. In this study, we aimed to develop appropriate heat treatments for industrial preparation of probiotics with antioxidant activity. Among 75 heat-killed strains, Lactococcus lactis MG5125 revealed the highest nitric oxide inhibition (86.2%), followed by Lactobacillus acidophilus MG4559 (86.0%), Lactobacillus plantarum MG5270 (85.7%), Lactobacillus fermentum MG4510 (85.3%), L. plantarum MG5239 (83.9%), L. plantarum MG5289 (83.2%), and L. plantarum MG5203 (81.8%). Moreover, the heat-killed selected strains markedly inhibited lipopolysaccharide-induced nitric oxide synthase and cyclooxygenase-2 expression. The use of heat-killed bacteria with intact bio-functionality can elongate the shelf-life and simplify the food processing steps of probiotic foods, given their high stability. The antioxidant and immune-modulatory activities of the heat-killed strains selected in this study indicate a strong potential for their utilization probiotic products manufacturing.

  相似文献   

13.
There is much information about glutathione (GSH) in eukaryotic cells, but relatively little is known about GSH in prokaryotes. Without GSH and glutathione redox cycle lactic acid bacteria (LAB) cannot protect themselves against reactive oxygen species. Previously we have shown the presence of GSH in Lactobacillus fermentum ME-3 (DSM14241). Results of this study show that probiotic L. fermentum ME-3 contains both glutathione peroxidase and glutathione reductase. We also present that L. fermentum ME-3 can transport GSH from environment and synthesize GSH. This means that it is characterized by a complete glutathione system: synthesis, uptake and redox turnover ability that makes L. fermentum ME-3 a perfect protector against oxidative stress. To our best knowledge studies on existence of the complete glutathione system in probiotic LAB strains are still absent and glutathione synthesis in them has not been demonstrated.  相似文献   

14.

Probiotics have been shown to have beneficial properties in attenuating the risk of colorectal cancer (CRC) development. However, functional evidence to support such effects for some probiotic bacteria are relatively unknown. Here, we document a significant antioxidant, anti-proliferative and pro-apoptotic activities of Lactobacillus acidophilus ATCC 314 and Lactobacillus fermentum NCIMB 5221 on CRC cells, particularly when used in combination (La-Lf). Furthermore, a superior synergistic activity on the inhibition of tumor growth and modulation of cell proliferation and epithelial markers in the Apc Min/+ CRC mouse model was explored, based on the expression levels of Ki-67, E-cadherin, β-catenin, and cleaved caspase-3 (CC3) proteins. The anti-cancer activity of La-Lf co-culture was significantly enhanced in vitro with significant reduced proliferation (38.8 ± 6.9 %, P = 0.009) and increased apoptosis (413 RUL, P < 0.001) towards cancer cells, as well as significant protection of normal colon cell growth from toxic treatment (18.6 ± 9.8 %, P = 0.001). La-Lf formulation (1010cfu/animal/day) altered aspects of intestinal tumorigenesis by significantly reducing intestinal tumor multiplicity (1.7-fold, P = 0.016) and downregulating cellular proliferation markers, including β-catenin (P = 0.041) and Ki-67 (P = 0.008). In conclusion, La-Lf showed greater protection against intestinal tumorigenesis supporting a potential use as a biotherapeutic for the prevention of CRC.

  相似文献   

15.
The antibacterial activity of citrus essential oils (EOs) in the context of combating Limosilactobacillus fermentum, one of the most important bacterial contaminants in the bioethanol production industry, has never been explored previously. Industrial processes usually utilize sulfuric acid for cell treatment to decrease bacterial contamination. However, due to the hazardous nature of sulfuric acid, an alternative to it is highly desirable. Therefore, in the present study, the efficacy of Fremont IAC 543 mandarin EO against a strain of L. fermentum (ATCC® 9338™) was evaluated under proliferative/nonproliferative conditions, in both pure culture and co-culture with an industrial strain of Saccharomyces cerevisiae. The mandarin EO exhibited higher effectiveness against L. fermentum compared to that against S. cerevisiae under nonproliferative conditions (added to water rather than to culture medium). At the concentration of 0·05%, the EO was as effective as the acid solution with pH 2·0 in reducing the count of L. fermentum almost 5 log CFU ml–1 cycles, while the concentration of 0·1% led to the complete loss of bacterial culturability. When L. fermentum was co-cultured with S. cerevisiae, the efficacy of the EO against the bacterial strain was reduced. However, despite this reduced efficacy in co-culture, mandarin EO may be considered effective in combating L. fermentum and could be applied in processes where this bacterium proves to be unfavourable and does not interact with S. cerevisiae.  相似文献   

16.
The objective of this study was to evaluate the effect of human gut-derived lactic acid bacteria and bifidobacteria on cholesterol levels in vitro. Continuous cultures inoculated with fecal material from healthy human volunteers with media supplemented with cholesterol and bile acids were used to enrich for potential cholesterol assimilators among the indigenous bacterial populations. Seven potential probiotics were found: Lactobacillus fermentum strains F53 and KC5b, Bifidobacterium infantis ATCC 15697, Streptococcus bovis ATCC 43143, Enterococcus durans DSM 20633, Enterococcus gallinarum, and Enterococcus faecalis. A comparative evaluation regarding the in vitro cholesterol reduction abilities of these strains along with commercial probiotics was undertaken. The degree of acid and bile tolerance of strains was also evaluated. The human isolate L. fermentum KC5b was able to maintain viability for 2 h at pH 2 and to grow in a medium with 4,000 mg of bile acids per liter. This strain was also able to remove a maximum of 14.8 mg of cholesterol per g (dry weight) of cells from the culture medium and therefore was regarded as a candidate probiotic.  相似文献   

17.
This study was conducted to isolate and identify lactobacilli from larval and adult midgut of wild Aedes aegypti (Ae. aegypti) to find candidate bacteria for paratransgenic control. Characterization of the bacterial symbionts was done using Gram staining, motility test, catalase test, and biochemical tests, among others, and the morphological features were confirmed using a standard scheme that simplifies the identification of lactic acid bacteria. A total of 174 strains were isolated and identified, 135 strains from larval midgut and 39 strains from adult midgut (mean ± SE, 4.00 ± 0.72; P = 0.00). The isolated species were confirmed to be Lactobacillus fermentum, L. casei, L. acidophilus, L. viridescens, L. brevis and L. gasseri. It can be concluded that Ae. aegypti has the potential of harboring the cultivable bacterial symbionts. In conclusion, the isolated species were nominated for paratransgenic control, particularly L. fermentum, being found in large numbers from both larval and adulxt midgut.  相似文献   

18.
Aims: Recent evidence suggests that the human gastric microbiota is much more diverse than previously thought. The aim of this study was to assess the potential for isolating lactobacilli from the human stomach. Methods and Results: Lactobacilli were selectively cultured from gastric biopsies from 12 patients undergoing routine endoscopy. Lactobacilli were present in four of 12 biopsies. We isolated, in total 10 different strains representing five species (Lactobacillus gasseri, L. fermentum, L. vaginalis, L. reuteri and L. salivarius). The 10 isolates varied greatly in their ability to inhibit the growth of two Gram‐positive bacteria and two Gram‐negative bacteria. Furthermore, the acid and bile resistance profiles of the 10 isolates spanned a wide range. Conclusions: Five different Lactobacillus species were cultured from human gastric biopsies for the first time. Significance and Impact of the Study: Diverse Lactobacillus species are more prevalent in the human stomach than previously recognized, representing an untapped source of bacteria with beneficial probiotic and/or biotechnological properties.  相似文献   

19.

Development of probiotics to improve the growth of cultured species is a key to sustainable aquaculture. The present study investigates the potential of salt pan bacteria as probiotics for Litopenaeus vannamei. Halotolerant bacteria (100) were screened for enzyme production and mucus adhesion in vitro. The bacteria (SK07, SK27, ABSK55, FSK444, TSK17, TSK71) exhibiting promising enzyme activity and adhesive property in vitro were selected to study their effect on the growth and metabolism of L. vannamei in vivo. When administered to shrimps individually as a water additive in experiment I, SK07, SK27 and TSK71 significantly (p < 0.05) increased shrimp weight as compared to the control. In experiment II, a lyophilized bacterial consortium (test) prepared with the four best isolates (SK07, SK27, ABSK55, TSK71), exhibited significantly higher weight gain of shrimps, better feed efficiency and final yield as compared to control. Total enzyme activity (amylase, protease, lipase) in the shrimp gut was significantly higher in the test than the control. The four isolates showed 99% nBLAST similarity with Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis and Pseudomonas sp. Presence of these bacteria in the shrimp gut was confirmed by using specific PCR-based molecular probes and 16S rDNA sequencing. Safety evaluation by antibiotic susceptibility test and hemolytic activity test indicated that the bacteria are safe as bioinoculants. The increased enzyme activity by colonisation of the isolates in the shrimp gut, along with improved growth and feed utilisation efficiency, strongly confirms that these salt pan bacteria are prospective probiotics in shrimp aquaculture.

  相似文献   

20.
Tanshinone IIA, a diterpene quinone extracted from the traditional herbal medicine, Salvia miltiorrhiza Bunge, is used widely and successfully in clinics in China for treating inflammatory diseases. Recently tanshinone IIA has been reported to have apoptosis inducing effects on a large variety of cancer cells. In this study, the anti-proliferation and apoptosis inducing effects of tanshinone IIA as well as its influence on cell adhesion to and invasion through the extracellular matrix (ECM) on acute promyelocytic leukemia (APL) NB4 cells in vitro were studied. Cell proliferation was assessed by MTT assay, cell apoptosis was observed by Hoechst 33258 staining and flow cytometry (FCM); The variation of caspase-3 and apoptotic related genes were assayed by Western blotting, cell mitochondrial membrane potential as well as cell adhesive and invasive effects were also investigated by using standard methods. The results showed that tanshinone IIA exhibited induction of apoptosis by activation of caspase-3, downregulation of anti-apoptotic protein bcl-2 and bcl-xl and upregulation of pro-apoptotic protein bax, as well as disruption of the mitochondrial membrane potential. Furthermore, treatment by tanshinone IIA could reduce cell adhesion to and invasion through ECM in leukemia NB4 cells. These data provide a potential mechanism for tanshinone IIA-induced apoptosis and cell growth inhibition in leukemia NB4 cells, suggesting that tanshinone IIA may serve as an effective adjunctive reagent for the treatment of APL.Contributed equally to this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号