首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show how hand-centred visual representations could develop in the primate posterior parietal and premotor cortices during visually guided learning in a self-organizing neural network model. The model incorporates trace learning in the feed-forward synaptic connections between successive neuronal layers. Trace learning encourages neurons to learn to respond to input images that tend to occur close together in time. We assume that sequences of eye movements are performed around individual scenes containing a fixed hand-object configuration. Trace learning will then encourage individual cells to learn to respond to particular hand-object configurations across different retinal locations. The plausibility of this hypothesis is demonstrated in computer simulations.  相似文献   

2.
Spike-timing-dependent plasticity (STDP) determines the evolution of the synaptic weights according to their pre- and post-synaptic activity, which in turn changes the neuronal activity. In this paper, we extend previous studies of input selectivity induced by (STDP) for single neurons to the biologically interesting case of a neuronal network with fixed recurrent connections and plastic connections from external pools of input neurons. We use a theoretical framework based on the Poisson neuron model to analytically describe the network dynamics (firing rates and spike-time correlations) and thus the evolution of the synaptic weights. This framework incorporates the time course of the post-synaptic potentials and synaptic delays. Our analysis focuses on the asymptotic states of a network stimulated by two homogeneous pools of “steady” inputs, namely Poisson spike trains which have fixed firing rates and spike-time correlations. The (STDP) model extends rate-based learning in that it can implement, at the same time, both a stabilization of the individual neuron firing rates and a slower weight specialization depending on the input spike-time correlations. When one input pathway has stronger within-pool correlations, the resulting synaptic dynamics induced by (STDP) are shown to be similar to those arising in the case of a purely feed-forward network: the weights from the more correlated inputs are potentiated at the expense of the remaining input connections.  相似文献   

3.
Massive synaptic pruning following over-growth is a general feature of mammalian brain maturation. This article studies the synaptic pruning that occurs in large networks of simulated spiking neurons in the absence of specific input patterns of activity. The evolution of connections between neurons were governed by an original bioinspired spike-timing-dependent synaptic plasticity (STDP) modification rule which included a slow decay term. The network reached a steady state with a bimodal distribution of the synaptic weights that were either incremented to the maximum value or decremented to the lowest value. After 1x10(6) time steps the final number of synapses that remained active was below 10% of the number of initially active synapses independently of network size. The synaptic modification rule did not introduce spurious biases in the geometrical distribution of the remaining active projections. The results show that, under certain conditions, the model is capable of generating spontaneously emergent cell assemblies.  相似文献   

4.
Accurately describing synaptic interactions between neurons and how interactions change over time are key challenges for systems neuroscience. Although intracellular electrophysiology is a powerful tool for studying synaptic integration and plasticity, it is limited by the small number of neurons that can be recorded simultaneously in vitro and by the technical difficulty of intracellular recording in vivo. One way around these difficulties may be to use large-scale extracellular recording of spike trains and apply statistical methods to model and infer functional connections between neurons. These techniques have the potential to reveal large-scale connectivity structure based on the spike timing alone. However, the interpretation of functional connectivity is often approximate, since only a small fraction of presynaptic inputs are typically observed. Here we use in vitro current injection in layer 2/3 pyramidal neurons to validate methods for inferring functional connectivity in a setting where input to the neuron is controlled. In experiments with partially-defined input, we inject a single simulated input with known amplitude on a background of fluctuating noise. In a fully-defined input paradigm, we then control the synaptic weights and timing of many simulated presynaptic neurons. By analyzing the firing of neurons in response to these artificial inputs, we ask 1) How does functional connectivity inferred from spikes relate to simulated synaptic input? and 2) What are the limitations of connectivity inference? We find that individual current-based synaptic inputs are detectable over a broad range of amplitudes and conditions. Detectability depends on input amplitude and output firing rate, and excitatory inputs are detected more readily than inhibitory. Moreover, as we model increasing numbers of presynaptic inputs, we are able to estimate connection strengths more accurately and detect the presence of connections more quickly. These results illustrate the possibilities and outline the limits of inferring synaptic input from spikes.  相似文献   

5.
Experimental and corresponding modeling studies indicate that there is a 2- to 5-fold variation of intrinsic and synaptic parameters across animals while functional output is maintained. Here, we review experiments, using the heartbeat central pattern generator (CPG) in medicinal leeches, which explore the consequences of animal-to-animal variation in synaptic strength for coordinated motor output. We focus on a set of segmental heart motor neurons that all receive inhibitory synaptic input from the same four premotor interneurons. These four premotor inputs fire in a phase progression and the motor neurons also fire in a phase progression because of differences in synaptic strength profiles of the four inputs among segments. Our work tested the hypothesis that functional output is maintained in the face of animal-to-animal variation in the absolute strength of connections because relative strengths of the four inputs onto particular motor neurons is maintained across animals. Our experiments showed that relative strength is not strictly maintained across animals even as functional output is maintained, and animal-to-animal variations in strength of particular inputs do not correlate strongly with output phase. Further experiments measured the precise temporal pattern of the premotor inputs, the segmental synaptic strength profiles of their connections onto motor neurons, and the temporal pattern (phase progression) of those motor neurons all in the same animal for a series of 12 animals. The analysis of input and output in this sample of 12 individuals suggests that the number (four) of inputs to each motor neuron and the variability of the temporal pattern of input from the CPG across individuals weaken the influence of the strength of individual inputs. Moreover, the temporal pattern of the output varies as much across individuals as that of the input. Essentially, each animal arrives at a unique solution for how the network produces functional output.  相似文献   

6.
Spike-timing-dependent plasticity (STDP) is believed to structure neuronal networks by slowly changing the strengths (or weights) of the synaptic connections between neurons depending upon their spiking activity, which in turn modifies the neuronal firing dynamics. In this paper, we investigate the change in synaptic weights induced by STDP in a recurrently connected network in which the input weights are plastic but the recurrent weights are fixed. The inputs are divided into two pools with identical constant firing rates and equal within-pool spike-time correlations, but with no between-pool correlations. Our analysis uses the Poisson neuron model in order to predict the evolution of the input synaptic weights and focuses on the asymptotic weight distribution that emerges due to STDP. The learning dynamics induces a symmetry breaking for the individual neurons, namely for sufficiently strong within-pool spike-time correlation each neuron specializes to one of the input pools. We show that the presence of fixed excitatory recurrent connections between neurons induces a group symmetry-breaking effect, in which neurons tend to specialize to the same input pool. Consequently STDP generates a functional structure on the input connections of the network.  相似文献   

7.
A time-varying Resistance-Capacitance (RC) circuit computer model was constructed based on known membrane and synaptic properties of the visualvestibular network of the marine snail Hermissenda crassicornis. Specific biophysical properties and synaptic connections of identified neurons are represented as lumped parameters (circuit elements) in the model; in the computer simulation, differential equations are approximated by difference equations. The model's output, membrane potential, an indirect measure of firing frequency, closely parallels the behavioral and electrophysiologic outputs of Hermissenda in response to the same input stimuli presented during and after associative learning. The parallelism of the computer modeled and the biologic outputs suggests that the model captures the features necessary and sufficient for associative learning.  相似文献   

8.
The aim of the present paper is to study the effects of Hebbian learning in random recurrent neural networks with biological connectivity, i.e. sparse connections and separate populations of excitatory and inhibitory neurons. We furthermore consider that the neuron dynamics may occur at a (shorter) time scale than synaptic plasticity and consider the possibility of learning rules with passive forgetting. We show that the application of such Hebbian learning leads to drastic changes in the network dynamics and structure. In particular, the learning rule contracts the norm of the weight matrix and yields a rapid decay of the dynamics complexity and entropy. In other words, the network is rewired by Hebbian learning into a new synaptic structure that emerges with learning on the basis of the correlations that progressively build up between neurons. We also observe that, within this emerging structure, the strongest synapses organize as a small-world network. The second effect of the decay of the weight matrix spectral radius consists in a rapid contraction of the spectral radius of the Jacobian matrix. This drives the system through the "edge of chaos" where sensitivity to the input pattern is maximal. Taken together, this scenario is remarkably predicted by theoretical arguments derived from dynamical systems and graph theory.  相似文献   

9.
Spike timing dependent plasticity (STDP) likely plays an important role in forming and changing connectivity patterns between neurons in our brain. In a unidirectional synaptic connection between two neurons, it uses the causal relation between spiking activity of a presynaptic input neuron and a postsynaptic output neuron to change the strength of this connection. While the nature of STDP benefits unsupervised learning of correlated inputs, any incorporation of value into the learning process needs some form of reinforcement. Chemical neuromodulators such as Dopamine or Acetylcholine are thought to signal changes between external reward and internal expectation to many brain regions, including the basal ganglia. This effect is often modelled through a direct inclusion of the level of Dopamine as a third factor into the STDP rule. While this gives the benefit of direct control over synaptic modification, it does not account for observed instantaneous effects in neuronal activity on application of Dopamine agonists. Specifically, an instant facilitation of neuronal excitability in the striatum can not be explained by the only indirect effect that dopamine-modulated STDP has on a neuron’s firing pattern. We therefore propose a model for synaptic transmission where the level of neuromodulator does not directly influence synaptic plasticity, but instead alters the relative firing causality between pre- and postsynaptic neurons. Through the direct effect on postsynaptic activity, our rule allows indirect modulation of the learning outcome even with unmodulated, two-factor STDP. However, it also does not prohibit joint operation together with three-factor STDP rules.  相似文献   

10.
This aim of this review is to describe the dynamics of learning-induced cellular modifications in the rat piriform (olfactory) cortex after olfactory discrimination learning and to describe their functional significance to long-term memory consolidation. The first change to occur is in the intrinsic properties of the neurons. One day after learning, pyramidal neurons show enhanced neuronal excitability. This enhancement results from reduction in calcium-dependent conductance that mediates the post burst after-hyperpolarization. Such enhanced excitability lasts for 3 days and is followed by a series of synaptic modifications. Several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons in the piriform cortex accompany olfactory learning. Enhanced synaptic release is indicated by reduced paired-pulse facilitation. Post-synaptic enhancement of synaptic transmission is indicated by reduced rise time of post-synaptic potentials and formation of new synaptic connections is indicated by increased spine density along dendrites of these neurons. Such modifications last for up to 5 days. Thus, olfactory discrimination rule learning is accompanied by a series of cellular modifications which occur and then disappear at different times. These modifications overlap partially, allowing the maintenance of the cortical system in a ‘learning mode’ in which memories for specific odors can be acquired rapidly and efficiently.  相似文献   

11.
A simple neural network model is proposed for kindling — the phenomenon of generating epilepsy by means of repeated electrical stimulation. The model satisfies Dale's hypothesis, incorporates a Hebb-like learning rule and has low periodic activity in absence of shocks. Many of the experimental observations are reproduced and some new experiments are suggested. It is proposed that the main reason for kindling is the formation of a large number of excitatory synaptic connections due to learning.  相似文献   

12.
Spike-timing-dependent synaptic plasticity (STDP) is a simple and effective learning rule for sequence learning. However, synapses being subject to STDP rules are readily influenced in noisy circumstances because synaptic conductances are modified by pre- and postsynaptic spikes elicited within a few tens of milliseconds, regardless of whether those spikes convey information or not. Noisy firing existing everywhere in the brain may induce irrelevant enhancement of synaptic connections through STDP rules and would result in uncertain memory encoding and obscure memory patterns. We will here show that the LTD windows of the STDP rules enable robust sequence learning amid background noise in cooperation with a large signal transmission delay between neurons and a theta rhythm, using a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections. The important element of the present model for robust sequence learning amid background noise is the symmetric STDP rule having LTD windows on both sides of the LTP window, in addition to the loop connections having a large signal transmission delay and the theta rhythm pacing activities of stellate cells. Above all, the LTD window in the range of positive spike-timing is important to prevent influences of noise with the progress of sequence learning.  相似文献   

13.
The dynamics of the learning equation, which describes the evolution of the synaptic weights, is derived in the situation where the network contains recurrent connections. The derivation is carried out for the Poisson neuron model. The spiking-rates of the recurrently connected neurons and their cross-correlations are determined self- consistently as a function of the external synaptic inputs. The solution of the learning equation is illustrated by the analysis of the particular case in which there is no external synaptic input. The general learning equation and the fixed-point structure of its solutions is discussed.  相似文献   

14.
The Hebbian rule (Hebb 1949), coupled with an appropriate mechanism to limit the growth of synaptic weights, allows a neuron to learn to respond to the first principal component of the distribution of its input signals (Oja 1982). Rubner and Schulten (1990) have recently suggested the use of an anti-Hebbian rule in a network with hierarchical lateral connections. When applied to neurons with linear response functions, this model allows additional neurons to learn to respond to additional principal components (Rubner and Tavan 1989). Here we apply the model to neurons with non-linear response functions characterized by a threshold and a transition width. We propose local, unsupervised learning rules for the threshold and the transition width, and illustrate the operation of these rules with some simple examples. A network using these rules sorts the input patterns into classes, which it identifies by a binary code, with the coarser structure coded by the earlier neurons in the hierarchy.  相似文献   

15.
A novel depth-from-motion vision model based on leaky integrate-and-fire (I&F) neurons incorporates the implications of recent neurophysiological findings into an algorithm for object discovery and depth analysis. Pulse-coupled I&F neurons capture the edges in an optical flow field and the associated time of travel of those edges is encoded as the neuron parameters, mainly the time constant of the membrane potential and synaptic weight. Correlations between spikes and their timing thus code depth in the visual field. Neurons have multiple output synapses connecting to neighbouring neurons with an initial Gaussian weight distribution. A temporally asymmetric learning rule is used to adapt the synaptic weights online, during which competitive behaviour emerges between the different input synapses of a neuron. It is shown that the competition mechanism can further improve the model performance. After training, the weights of synapses sourced from a neuron do not display a Gaussian distribution, having adapted to encode features of the scenes to which they have been exposed.  相似文献   

16.
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.  相似文献   

17.
Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint “forearm” to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (−1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.  相似文献   

18.
Presented in this paper is a neural network model that can be used to investigate the possible self-organizing mechanisms occurring during the early ontogeny of spinal neural circuits in the vertebrate motor system. The neural circuit is composed of multiple types of neurons which correspond to motorneurons, Renshaw cells and a hypothetical class of interneurons. While the connectivity of this circuit is genetically predetermined, the efficacies of these connections – the synaptic s trengths – evolve in accordance with activity-dependent mechanisms which are initiated by the intrinsic, autonomous activity present in the developing spinal cord. Using Oja's rule, a modified Hebbian learning scheme for adjusting the values of the connections, the network stably self-organizes developing, in the process, reciprocally activated motorneuron pools analogous to those which exist in vivo. Received: 30 December 1996 / Accepted in revised form: 20 June 1997  相似文献   

19.
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.  相似文献   

20.
Theta phase precession in rat hippocampal place cells is hypothesized to contribute to memory encoding of running experience in the sense that it provides the ideal timing for synaptic plasticity and enables the asymmetric associative connections under the Hebbian learning rule with asymmetric time window (Yamaguchi 2003). When the sequence of place fields is considered as the episodic memory of running experience, a given spatial route should be accurately stored in spite of differing overlap extent among place fields and varying running velocity. Using a hippocampal network model with phase precession and the Hebbian learning rule with asymmetric time window, we investigate the memory encoding of place field sequences in a single traversal experience. Computer experiments show that place fields cannot be stored correctly until an input-dependent feature is introduced into the learning rule. These experiments further indicate that there exists an optimum value for the saturation level of synaptic plasticity and the speed of synaptic plasticity in the learning rule, which are correlated with, respectively, the overlap extent of place field sequence and the running velocity of animal during traversal. A comparison of these results with biological evidences shows good agreement and suggests that behavior-dependent regulation of the learning rule is necessary for memory encoding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号