首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到1条相似文献,搜索用时 0 毫秒
1.
Two α-amylase genes from the thermophilic alkaliphile Anaerobranca gottschalkii were cloned, and the corresponding enzymes, AmyA and AmyB, were investigated after purification of the recombinant proteins. Based on their amino acid sequences, AmyA is proposed to be a lipoprotein with extracellular localization and thus is exposed to the alkaline milieu, while AmyB apparently represents a cytoplasmic enzyme. The amino acid sequences of both enzymes bear high similarity to those of GHF13 proteins. The different cellular localizations of AmyA and AmyB are reflected in their physicochemical properties. The alkaline pH optimum (pH 8), as well as the broad pH range, of AmyA activity (more than 50% activity between pH 6 and pH 9.5) mirrors the conditions that are encountered by an extracellular enzyme exposed to the medium of A. gottschalkii, which grows between pH 6 and pH 10.5. AmyB, on the other hand, has a narrow pH range with a slightly acidic pH optimum at 6 to 6.5, which is presumably close to the pH in the cytoplasm. Also, the intracellular AmyB is less tolerant of high temperatures than the extracellular AmyA. While AmyA has a half-life of 48 h at 70°C, AmyB has a half-life of only about 10 min at that temperature, perhaps due to the lack of stabilizing constituents of the cytoplasm. AmyA and AmyB were very similar with respect to their substrate specificity profiles, clearly preferring amylose over amylopectin, pullulan, and glycogen. Both enzymes also hydrolyzed α-, β-, and γ-cyclodextrin. Very interestingly, AmyA, but not AmyB, displayed high transglycosylation activity on maltooligosaccharides and also had significant β-cyclodextrin glycosyltransferase (CGTase) activity. CGTase activity has not been reported for typical α-amylases before. The mechanism of cyclodextrin formation by AmyA is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号