首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
Recent studies show LDL receptor-related protein 1B, LRP1B as a transducer of extracellular signals. Here, we identify six interacting partners of the LRP1B cytoplasmic region by yeast two-hybrid screen and confirmed their in vivo binding by immunoprecipitation. One of the partners, PICK1 recognizes the C-terminus of LRP1B and LRP1. The cytoplasmic domains of LRP1B are phosphorylated by PKCα about 100 times more efficiently than LRP1. Binding of PICK1 inhibits phosphorylation of LRP1B, but does not affect LRP1 phosphorylation.This study presents the possibility that LRP1B participates in signal transduction which PICK1 may regulate by inhibiting PKCα phosphorylation of LRP1B.

Structured summary

MINT-6801075: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with SNTG2 (uniprotkb:Q925E0) by two hybrid (MI:0018)MINT-6801030, MINT-6801468: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by two hybrid (MI:0018)MINT-6801284: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by anti tag coimmunoprecipitation (MI:0007)MINT-6801108: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Grb7 (uniprotkb:Q03160) by two hybrid (MI:0018)MINT-6801090: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by two hybrid (MI:0018)MINT-6801008: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by two hybrid (MI:0018)MINT-6801052: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-2 (uniprotkb:Q9ERE9) by two hybrid (MI:0018)MINT-6801258, MINT-6801271: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by anti tag coimmunoprecipitation (MI:0007)MINT-6801244: RanBPM (uniprotkb:P69566) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801131, MINT-6801158: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by anti tag coimmunoprecipitation (MI:0007)MINT-6801231: PICK1 (uniprotkb:Q80VC8) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801173: Jip-1b (uniprotkb:Q9WVI9-1) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

2.
3.
PICK1的结构与功能研究进展   总被引:1,自引:0,他引:1  
PICK1蛋白是一个从线虫到人都高度保守膜周蛋白,在多种组织中表达,尤以脑和睾丸的表达最高.在细胞内,PICK1定位于核周区和诸如神经突触的特化细胞结构中.PICK1蛋白含一个PDZ结构域和一个BAR结构域,PDZ结构域能和许多膜蛋白结合.而BAR结构域能与脂质分子(主要为磷酸肌醇)相结合,通过这种机制PICK1可调节相关蛋白的亚细胞定位和膜表达.由于各蛋白与PICK1相互作用的PDZ结合基序不同,可利用与特定蛋白结合基序相同的PDZ结合多肤竞争性地结合PDZ结构域,特异性地阻断该蛋白的作用,从而特异性地增强或减弱PICK1在某组织中的作用,为PICK1的临床应用提供了药理基础.  相似文献   

4.
Various pathways, including regulation of functions of the Bcl-2 family, are implicated in the survival promotion by PKCα, however the molecular mechanisms are still obscure. We have previously demonstrated that PKCα is selectively anchored to mitochondria by PICK1 in fibroblasts NIH 3T3. In this study, we show that over-expression of PICK1 in leukemia REH confers resistance to etoposide-induced apoptosis, which requires an interaction with PKCα as the non-interacting mutant PICK1 loses the pro-survival activity. The PKCα selective inhibitor Gö6976 also abolishes the anti-apoptotic effect indicating a requirement for PKC activity. Disruption of PICK1/PKCα interactions by inhibitory peptides significantly increases cellular susceptibility to etoposide. Similar effects are also observed in HL60 cells, which exhibit an intrinsic resistance to etoposide. Molecular analysis shows that the wild type PICK1, but not the non-interacting mutant, prevents the loss of mitochondrial membrane potential with a coincident increase in phosphorylation of the anti-apoptotic Bcl-2(Ser70) and a decrease in dimerization of the pro-apoptotic Bax. PICK1 may provide the spatial proximity for phosphorylation of Bcl-2(Ser70) by PKCα which then leads to a higher survival. Taken together, our results suggest that PICK1 may mediate the pro-survival activity of PKCα by serving as a molecular link between PKCα and mitochondria.  相似文献   

5.
蛋白质是生命功能的执行者.生命体中某些关键蛋白的功能异常往往是导致疾病发生的根本原因.这些疾病相关蛋白极有可能成为药物靶点,为新药研发和疾病治疗提供重要线索. PICK1蛋白(protein interacting with Cα kinase 1)结合能力广泛、功能多样以及在多种重要疾病(如:癌症、精神分裂症、疼痛、帕金森综合症等)的发生发展过程中发挥潜在的作用,使其成为一个可能的药靶蛋白. PICK1与绝大多数配体蛋白的相互作用是通过其PDZ结构域与配体C末端区域的结合介导的,使PICK1的PDZ结构域成为一个潜在的药物靶点.因此,可以利用生物小分子物质特异性地结合PICK1的PDZ结构域,干扰或阻断PICK1与配体蛋白的天然相互作用,最终达到治疗相关疾病的目的.  相似文献   

6.
7.
蛋白激酶C相互作用蛋白1(protein interacting with Ckinase1,PICK1)是调节AMPA(alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)受体在细胞膜上的数量与分布,引起LTP与LTD现象的重要蛋白.本文利用基因克隆、荧光光谱以及免疫分析等方法,分析了PICK1蛋白C末端酸性区对BAR结构域与膜脂结合能力以及PICK1分子内BAR(Bin/amphiphysin/RVS)结构域与PDZ结构域相互作用的影响,研究了钙离子结合C末端酸性区后对上述相互作用的调节.结果显示,C末端酸性区的存在使BAR结构域与膜脂的结合能力减弱大约10倍,但PICK1分子内的BAR与PDZ结构域的相互作用与不含C末端的酸性区相比增强了大约4倍.另一方面,C末端酸性区的存在,伴随钙离子浓度的提高,有助于增强BAR与膜脂的结合,却削弱了PDZ和BAR结构域的作用.当钙离子浓度增加到500μmol/L时,BARC的脂质结合能力以及和PDZ的亲和力与不含酸性区相当.  相似文献   

8.
9.
Dong A  Zhu Y  Yu Y  Cao K  Sun C  Shen WH 《Planta》2003,216(4):561-570
The nucleosome assembly protein 1 (NAP1) is considered to be a conserved histone chaperone, facilitating the assembly of nucleosomes in all eukaryotes. However, studies in yeast and animal cells also indicated that NAP1 proteins have diverse functions likely independent of nucleosome-assembly activity. Here, we describe the isolation and characterization of cDNAs encoding NAP1-like proteins from the monocotyledon rice ( Oryza sativa L.) and the dicotyledon tobacco ( Nicotiana tabacum L.). Northern-blot analysis demonstrated that the two rice NAP1-like genes are predominantly expressed in stem tissues such as root and shoot apical meristems as well as in young flowers. During the cell cycle, all four tobacco NAP1-like genes are highly expressed, with one of them showing a slightly increased expression at the G1/S transition. These results are consistent with a role for plant NAP1-like proteins in cell division. In vitro binding assays revealed that different NAP1-like proteins bind, with distinct relative binding strengths, to different classes of histone. Intracellular localization analyses showed that some NAP1-like proteins could be targeted into the nucleus whereas others are exclusively cytoplasm-localized. It is thus likely that different plant NAP1-like proteins have distinct functions in vivo. Plant NAP1-like proteins were observed to concentrate around the metaphase plate and in the phragmoplast, suggesting a role in mitotic events and cytokinesis.  相似文献   

10.
3′–nucleases/nucleotidases of the S1–P1 family (EC 3.1.30.1) are single–strand–specific or non-specific zinc–dependent phosphoesterases present in plants, fungi, protozoan parasites, and in some bacteria. They participate in a wide variety of biological processes and their current biotechnological applications rely on their single–strand preference, nucleotide non-specificity, a broad range of catalytic conditions and high stability. We summarize the present and potential utilization of these enzymes in biotechnology and medicine in the context of their biochemical and structure–function properties. Explanation of unanswered questions for bacterial and trypanosomatid representatives could facilitate development of emerging applications in medicine.  相似文献   

11.
《Mutation Research Letters》1994,323(1-2):69-74
Ascorbingen, which occurs naturally in the human diet, and a synthetic analogue (1′-methylascorbigen), were assayed for cytotoxic and clastogenic activities in a SV40-transformed Indian Muntjac cell line (SVM), and for mutagenic activity in the Ames test using Salmonella typhimurium strains TA98 and TA100. Ascorbigen had no effect upon the clonal survival of SVM at concentrations below 0.21 mg/ml and did not induce either chromosome aberrations or sister-chromatid exchanges (SCEs) at any concentration tested up to the maximum compatible with the assay conditions; nor did it induce mutations in either Salmonella strain. In contrast, 1′-methylascorbigen was an order of magnitude more cytotoxic, demonstrating a Dq of 0.03 mg/ml, and whilst it too was not found to induce chromosome aberrations it did induce SCEs in SVM (although only at higly cytotoxic doses) and mutations in the Ames test.  相似文献   

12.
《Life sciences》1993,53(12):PL177-PL181
In membranes prepared from rabbit liver, competition with [3H] prazosin by different α1-agonists and antagonists revealed different affinities in comparison to the results obtained on rat liver membranes, and showed a good correlation with the affinity of the same compounds for the cloned α1c-adrenoceptor subtype. The potencies observed on rat liver membranes were well correlated with the affinity observed for the cloned α1b-adrenoceptors. These results confirm that rabbit and rat liver membranes preparations can be utilized to evaluate the affinity of compounds for these α1-adrenergic subtypes.  相似文献   

13.
The transforming growth factor-beta (TGF-β) 1 is a mediator of extracellular matrix (ECM) gene expression in mesangial cells and the development of diabetic glomerulopathy. Here, we investigate the effects of TGF-β1 on laminin γ1 and fibronectin polypeptide expression and cell survival in mouse mesangial cells (MES-13). TGF-β1 (10 ng/ml) stimulates laminin-γ1 and fibronectin expression ~two-fold in a time-dependent manner (0–48 h). TGF-β1 treatment also retards laminin-γ1 mobility on SDS-gels, and tunicamycin, an inhibitor of the N-linked glycosylation, blocks the mobility shift. TGF-β1 increases the binding of laminin γ1 to WGA-agarose and the binding is abolished by tunicamycin suggesting that laminin γ1 is modified by N-linked glycosylation. TGF-β1 also elevates fibronectin glycosylation but its mobility is not altered. The degradation of laminin γ1 and fibronectin proteins is reduced by their glycosylation. In addition, TGF-β1 enhances mesangial cell viability and metabolic activities initially (0–24 h); however, eventually leads to cell death (24–48 h). TGF-β1 elevates pro-apoptotic caspase-3 activity and decrease cell cycle progression factor cyclin D1 expression, which parallels cell death. These results indicate that TGF-β1 plays an important role in ECM expression, protein glycosylation and demise of mesangial cells in the diabetic glomerular mesangium. (Mol Cell Biochem 278: 165–175, 2005)  相似文献   

14.
While elevated plasma prorenin levels are commonly found in diabetic patients and correlate with diabetic nephropathy, the pathological role of prorenin, if any, remains unclear. Prorenin binding to the (pro)renin receptor [(p)RR] unmasks prorenin catalytic activity. We asked whether elevated prorenin could be activated at the site of renal mesangial cells (MCs) through receptor binding without being proteolytically converted to renin. Recombinant inactive rat prorenin and a mutant prorenin that is noncleavable, i.e., cannot be activated proteolytically, are produced in 293 cells. After MCs were incubated with 10(-7) M native or mutant prorenin for 6 h, cultured supernatant acquired the ability to generate angiotensin I (ANG I) from angiotensinogen, indicating both prorenins were activated. Small interfering RNA (siRNA) against the (p)RR blocked their activation. Furthermore, either native or mutant rat prorenin at 10(-7) M alone similarly and significantly induced transforming growth factor-β(1), plasminogen activator inhibitor-1 (PAI-1), and fibronectin mRNA expression, and these effects were blocked by (p)RR siRNA, but not by the ANG II receptor antagonist, saralasin. When angiotensinogen was also added to cultured MCs with inactive native or mutant prorenin, PAI-1 and fibronectin were further increased significantly compared with prorenin or mutant prorenin alone. This effect was blocked partially by treatment with (p)RR siRNA or saralasin. We conclude that prorenin binds the (p)RR on renal MCs and is activated nonproteolytically. This activation leads to increased expression of PAI-1 and transforming growth factor-β(1) via ANG II-independent and ANG II-dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may play a role in the development of diabetic nephropathy.  相似文献   

15.
Local inflammation was inflicted in a baboon by turpentine administration in order to induce the plasma level of α1-antitrypsin, an acute phase protein synthesized in the liver. Comparison of the α1-antitrypsin mRNA activity in the induced and non-induced baboon liver indicated that the “acute phase” response to chemical-inflicted inflammation is mediated through an increase in the steady-state level of cellular mRNA. Alpha-1-antitrypsin was then enriched from the induced baboon liver to a purity of greater than 90% by specific immunoprecipitation of polysomes. Double-stranded DNA was synthesized from the enriched mRNA and inserted into the Pst I site of pBR322. Recombinant clones containing α1-antitrypsin cDNA sequences were identified by hybridselected translation and confirmed by DNA sequence analysis.  相似文献   

16.
Rap1GAP is a GTPase-activating protein (GAP) that specifically stimulates the GTP hydrolysis of Rap1 GTPase. Although Rap1GAP is recognized as a tumor suppressor gene and downregulated in various cancers, little is known regarding the regulation of Rap1GAP ubiquitination and degradation under physiological conditions. Here, we demonstrated that Rap1GAP is ubiquitinated and degraded through proteasome pathway in mitosis. Proteolysis of Rap1GAP requires the PLK1 kinase and β-TrCP ubiquitin ligase complex. We revealed that PLK1 interacts with Rap1GAP in vivo through recognition of an SSP motif within Rap1GAP. PLK1 phosphorylates Ser525 in conserved 524DSGHVS529 degron of Rap1GAP and promotes its interaction with β-TrCP. We also showed that Rap1GAP was a cell cycle regulator and that tight regulation of the Rap1GAP degradation in mitosis is required for cell proliferation.  相似文献   

17.
PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation site for PKCα. Mutation of Ser77 reduced the level of PKCα-mediated phosphorylation ~50%, whereas no reduction was observed upon mutation of seven other predicted sites. Addition of lipid vesicles increased the level of phosphorylation of Ser77 10-fold, indicating that lipid binding is critical for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its lipid binding and/or polymerization capacity. We propose that PICK1 is phosphorylated at Ser77 by PKCα preferentially when bound to membrane vesicles and that this phosphorylation in turn modulates its cellular distribution.  相似文献   

18.
Summary The cross-reactions of human 1-antichymotrypsin and C 1 q with their homologues in the plasmas of the chimpanzee, several Old World monkeys and nine non-primate eutheria were investigated by standard procedures. The results show that cross-reactions are limited to the first species mentioned. Comparative Ouchterlony tests and absorption controls revealed the presence of two (human) determinants on both human and chimpanzee molecules, while the cercopithecoids analyzed carried only one of them on their homologue. The results are discussed briefly with reference to earlier findings from this laboratory.
Zusammenfassung Die Kreuzreaktionen des menschlichen 1-Antichymotrypsin und des C 1 q mit seinen Homologen im Plasma des Schimpansen, einiger Altweltaffen und demjenigen von 9 Nichtprimaten (Eutheria) wurden mit Standardmethoden untersucht. Die Ergebnisse zeigen, daß Kreuzreaktionen auf die zuerst genannten Species beschränkt sind. Vergleichende Ouchterlony-Tests und Absorptionskontrollen ließen die Anwesenheit zweier (menschlicher) Determinaten auf den Molekülen des Menschen und des Schimpansen erkennbar werden, während die untersuchten Cercopithecoidea nur eine dieser Determinanten besitzen. Die Ergebnisse werden kurz im Zusammenhang mit früheren Befunden aus unserem Laboratorium diskutiert.
  相似文献   

19.
20.
A new system for sustained release of growth factors, such as osteogenic protein 1 (OP-1) and transforming growth factor β1 (TGF-β1), intended to repair and promote dental tissue regeneration in rats was designed and characterized in this work. The release system was made with microparticles of sodium alginate, produced by ionic gelling dripping technique. The release profiles of OP-1 and TGF-β1 from biopolymer matrix were determined by high-performance liquid chromatography (HPLC), and with this purpose, an HPLC-UV method was developed. About 80% of each growth factor was released in the first 24 h, reaching almost 100% in 168 h. The system was tested during the tissue repair in rat molars in comparison with calcium hydroxide and both growth factors not encapsulated. The dentin sialoprotein (DSP) was used as a repair marker. It was detected by immunohistochemistry, after 14- and 28-d post-treatment. X 2 test (p ≤ 0.001) and Fisher exact test (p ≤ 0.05) were applied for assessment of the amount of immunostaining. The treatment with encapsulated OP-1 showed an increased DSP immunostaining after 14 d and did not find any significant difference with the immunostaining observed for calcium hydroxide treatment. Treatment with TGF-β1 did not show significant difference with calcium hydroxide. Treatment with both factors OP-1 and TGF-β1 showed higher DSP immunostaining in comparison with calcium hydroxide treatment. In conclusion, the combination of both growth factors encapsulated showed more DSP immunostaining in comparison with each one separated, either encapsulated or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号