首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A close homologue of the acquired Staphylococcus aureus mecA gene is present as a native gene in Staphylococcus sciuri. We determined the patterns of penicillin-binding proteins (PBPs) and the peptidoglycan compositions of several S. sciuri strains to explore the functions of this mecA homologue, named pbpD, in its native S. sciuri environment. The protein product of pbpD was identified as PBP4 with a molecular mass of 84 kDa, one of the six PBPs present in representatives of each of three subspecies of S. sciuri examined. PBP4 had a low affinity for nafcillin, reacted with a monoclonal antibody raised against S. aureus PBP2A, and was greatly overproduced in oxacillin-resistant clinical isolate S. sciuri SS37 and to a lesser extent in resistant laboratory mutant K1M200. An additional PBP inducible by oxacillin and corresponding to S. aureus PBP2A was identified in another oxacillin-resistant clinical isolate, S. sciuri K3, which harbors an S. aureus copy of mecA. Oxacillin resistance depended on the overtranscribed S. sciuri pbpD gene in strains SS37 and K1M200, while the resistance of strain K3 depended on the S. aureus copy of mecA. Our data provide evidence that both S. aureus mecA and S. sciuri pbpD can function as resistance determinants in either an S. aureus or an S. sciuri background and that the protein products of these genes, S. aureus PBP2A and S. sciuri PBP4, can participate in the biosynthesis of peptidoglycan, the muropeptide composition of which depends on the bacterium “hosting” the resistance gene.  相似文献   

2.
We have used atomic-force microscopy (AFM) to probe the effect of peptidoglycan crosslinking reduction on the elasticity of the Staphylococcus aureus cell wall, which is of particular interest as a target for antimicrobial chemotherapy. Penicillin-binding protein 4 (PBP4) is a nonessential transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. aureus. Importantly, this protein is essential for β-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not in hospital-acquired MRSA strains. Using AFM in a new mode for recording force/distance curves, we observed that the absence of PBP4, and the concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 was observed both in community-acquired and hospital-acquired MRSA strains, indicating that high levels of peptidoglycan crosslinking modulate the overall structure and mechanical properties of the S. aureus cell envelope in both types of clinically relevant strains. Additionally, we were able to show that the applied method enables the separation of cell wall properties and turgor pressure.  相似文献   

3.
Methicillin-resistant Staphylococcus aureus (MRSA) strains show strain-to-strain variation in resistance level, in genetic background, and also in the structure of the chromosomal cassette (SCCmec) that carries the resistance gene mecA. In contrast, strain-to-strain variation in the sequence of the mecA determinant was found to be much more limited among MRSA isolates examined so far. The first exception to this came with the recent identification of MRSA strain LGA251, which carries a new homolog of this gene together with regulatory elements mecI/mecR that also have novel, highly divergent structures. After cloning and purification in Escherichia coli, PBP2ALGA, the protein product of the new mecA homolog, showed aberrant mobility in SDS-PAGE, structural instability and loss of activity at 37 °C, and a higher relative affinity for oxacillin as compared with cefoxitin. The mecA homolog free of its regulatory elements was cloned into a plasmid and introduced into the background of the β-lactam-susceptible S. aureus strain COL-S. In this background, the mecA homolog expressed a high-level resistance to cefoxitin (MIC = 400 μg/ml) and a somewhat lower resistance to oxacillin (minimal inhibitory concentration = 200 μg/ml). Similar to PBP2A, the protein homolog PBP2ALGA was able to replace the essential function of the S. aureus PBP2 for growth. In contrast to PBP2A, PBP2ALGA did not depend on the transglycosylase activity of the native PBP2 for expression of high level resistance to oxacillin, suggesting that the PBP2A homolog may preferentially cooperate with a monofunctional transglycosylase as the alternative source of transglycosylase activity.  相似文献   

4.
Type or The emergence of resistance to antibiotic has developed a complicated situation in the treatment of bacterial infections. Considering the antimicrobial resistance phenomenon as one of the greatest challenge of medicinal chemists for search of better anti-bacterial agents, which have potential narrow spectrum activity with low development of resistance potential and low toxicity to host. Cross-linking of peptidoglycan is a key step catalyze by Penicillin binding protein (PBP) to maintain integrity of cell wall in bacterial cell. However, these Penicillin binding protein (PBP) has developed resistance in methicillin-resistant Staphylococcus aureus (MRSA) due to acquisition of additional PBP2a. Various Quinazolinone analogues are reported in literature as potential anti-bacterial agents against MRSA. In present study new quinazolinone analogues has been designed, guided by molecular docking, In-silico and MM-GBSA study. Newly designed molecules have been synthesized by medicinal chemistry route and their characterization was done by using IR, NMR, & HR-MS techniques. Biological evaluation of synthesized compounds has been done on wild type Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus) and resistant MRSA bacterial strains using Streptomycin, Kanamycin and Linezolid as standard drugs respectively. The in vitro evaluation results have shown that compound 5f is active with MIC value 15.625 μg/mL against S. aureus and with MIC value 31.25 μg/mL against MRSA.  相似文献   

5.
6.
We have used atomic-force microscopy (AFM) to probe the effect of peptidoglycan crosslinking reduction on the elasticity of the Staphylococcus aureus cell wall, which is of particular interest as a target for antimicrobial chemotherapy. Penicillin-binding protein 4 (PBP4) is a nonessential transpeptidase, required for the high levels of peptidoglycan crosslinking characteristic of S. aureus. Importantly, this protein is essential for β-lactam resistance in community-acquired, methicillin-resistant S. aureus (MRSA) strains but not in hospital-acquired MRSA strains. Using AFM in a new mode for recording force/distance curves, we observed that the absence of PBP4, and the concomitant reduction of the peptidoglycan crosslinking, resulted in a reduction in stiffness of the S. aureus cell wall. Importantly, the reduction in cell wall stiffness in the absence of PBP4 was observed both in community-acquired and hospital-acquired MRSA strains, indicating that high levels of peptidoglycan crosslinking modulate the overall structure and mechanical properties of the S. aureus cell envelope in both types of clinically relevant strains. Additionally, we were able to show that the applied method enables the separation of cell wall properties and turgor pressure.  相似文献   

7.
8.
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important bacterial pathogens based on its incidence and the severity of its associated infections. In addition, severe MRSA infections can occur in hospitalised patients or healthy individuals from the community. Studies have shown the infiltration of MRSA isolates of community origin into hospitals and variants of hospital-associated MRSA have caused infections in the community. These rapid epidemiological changes represent a challenge for the molecular characterisation of such bacteria as a hospital or community-acquired pathogen. To efficiently control the spread of MRSA, it is important to promptly detect the mecA gene, which is the determinant of methicillin resistance, using a polymerase chain reaction-based test or other rapidly and accurate methods that detect the mecA product penicillin-binding protein (PBP)2a or PBP2’. The recent emergence of MRSA isolates that harbour a mecA allotype, i.e., the mecC gene, infecting animals and humans has raised an additional and significant issue regarding MRSA laboratory detection. Antimicrobial drugs for MRSA therapy are becoming depleted and vancomycin is still the main choice in many cases. In this review, we present an overview of MRSA infections in community and healthcare settings with focus on recent changes in the global epidemiology, with special reference to the MRSA picture in Brazil.  相似文献   

9.
10.
11.
The glutamic acid residues of the peptidoglycan of Staphylococcus aureus and many other bacteria become amidated by an as yet unknown mechanism. In this communication we describe the identification, in the genome of S. aureus strain COL, of two co-transcribed genes, murT and gatD, which are responsible for peptidoglycan amidation. MurT and GatD have sequence similarity to substrate-binding domains in Mur ligases (MurT) and to the catalytic domain in CobB/CobQ-like glutamine amidotransferases (GatD). The amidation of glutamate residues in the stem peptide of S. aureus peptidoglycan takes place in a later step than the cytoplasmic phase – presumably the lipid phase - of the biosynthesis of the S. aureus cell wall precursor. Inhibition of amidation caused reduced growth rate, reduced resistance to beta-lactam antibiotics and increased sensitivity to lysozyme which inhibited culture growth and caused degradation of the peptidoglycan.  相似文献   

12.
Ceftaroline (CPT) is a novel cephalosporin with in vitro activity against Staphylococcus aureus. Ceftaroline exhibits a level of binding affinity for PBPs in S. aureus including PBP2a of methicillin-resistant S. aureus (MRSA). The aims of this study were to investigate the morphological, physiological and molecular responses of MRSA clinical strains and MRSA biofilms to sub-MICs (1/4 and 1/16 MIC) of ceftaroline by using transmission, scanning and confocal microscopy. We have also used quantitative Real-Time PCR to study the effect of sub-MICs of ceftaroline on the expression of the staphylococcal icaA, agrA, sarA and sasF genes in MRSA biofilms. In one set of experiments, ceftaroline was able to inhibit biofilm formation in all strains tested at MIC, however, a strain dependent behavior in presence of sub-MICs of ceftaroline was shown. In a second set of experiments, destruction of preformed biofilms by addition of ceftaroline was evaluated. Ceftaroline was able to inhibit biofilm formation at MIC in all strains tested but not at the sub-MICs. Destruction of preformed biofilms was strain dependent because the biofilm formed by a matrix-producing strain was resistant to a challenge with ceftaroline at MIC, whereas in other strains the biofilm was sensitive. At sub-MICs, the impact of ceftaroline on expression of virulence genes was strain-dependent at 1/4 MIC and no correlation between ceftaroline-enhanced biofilm formation and gene regulation was established at 1/16 MIC. Our findings suggest that sub-MICs of ceftaroline enhance bacterial attachment and biofilm formation by some, but not all, MRSA strains and, therefore, stress the importance of maintaining effective bactericidal concentrations of ceftaroline to fight biofilm-MRSA related infections.  相似文献   

13.
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the most important pathogens both in health care and community-onset infections. The prerequisite for methicillin resistance is mecA, which encodes a β-lactam-insensitive penicillin binding protein PBP2a. A characteristic of MRSA strains from hospital and community associated infections is their heterogeneous expression of resistance to β-lactam (HeR) in which only a small portion (≤0.1%) of the population expresses resistance to oxacillin (OXA) ≥10 µg/ml, while in other isolates, most of the population expresses resistance to a high level (homotypic resistance, HoR). The mechanism associated with heterogeneous expression requires both increase expression of mecA and a mutational event that involved the triggering of a β-lactam-mediated SOS response and related lexA and recA genes. In the present study we investigated the cellular physiology of HeR-MRSA strains during the process of β-lactam-mediated HeR/HoR selection at sub-inhibitory concentrations by using a combinatorial approach of microarray analyses and global biochemical profiling employing gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) to investigate changes in metabolic pathways and the metabolome associated with β-lactam-mediated HeR/HoR selection in clinically relevant heterogeneous MRSA. We found unique features present in the oxacillin-selected SA13011-HoR derivative when compared to the corresponding SA13011-HeR parental strain that included significant increases in tricarboxyl citric acid (TCA) cycle intermediates and a concomitant decrease in fermentative pathways. Inactivation of the TCA cycle enzyme cis-aconitase gene in the SA13011-HeR strain abolished β-lactam-mediated HeR/HoR selection demonstrating the significance of altered TCA cycle activity during the HeR/HoR selection. These results provide evidence of both the metabolic cost and the adaptation that HeR-MRSA clinical strains undergo when exposed to β-lactam pressure, indicating that the energy production is redirected to supply the cell wall synthesis/metabolism, which in turn contributes to the survival response in the presence of β-lactam antibiotics.  相似文献   

14.
Ramoplanin is a potent lipoglycodepsipeptide antibiotic that is active against a wide range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococcus (VRE). It acts as an inhibitor of peptidoglycan (PG) biosynthesis that disrupts glycan chain polymerization by binding and sequestering Lipid II, a PG precursor. Herein, we report the functional antimicrobial activity (MIC, S. aureus) and fundamental biochemical assessments against a peptidoglycan glycosyltransferase (Escherichia coli PBP1b) of a set of key alanine scan analogues of ramoplanin that provide insight into the importance and role of each of its individual amino acid residues.  相似文献   

15.
Staphylococcal Cassette Chromosome mec (SCCmec) is a mobile genetic element that carries the gene mecA mediating the methicillin resistance in staphylococci. It is composed of mec and ccr gene complexes. Six SCCmec types have been defined so far. SCCmec typing of 13 methicillin-resistant Staphylococcus aureus (MRSA) out of 72 (18%) non redundant S. aureus strains recovered in 1998–2007 at the Bone Marrow Transplant Centre of Tunis was carried out. The isolates were identified by conventional methods. Antibiotic susceptibility was determined by oxacillin and cefoxitin disks and oxacillin MIC by E-test. Methicillin resistance was detected by mecA PCR. The SCCmec complex types were determined by PCR. The epidemiology of MRSA has been investigated by PFGE. Among 13 mecA positive strains, 12 were resistant to oxacillin (MIC = 3 to >256 μg/μl) and to cefoxitin and one strain was pre-resistant: susceptible to oxacillin (MIC = 0.19 μg/μl) and to cefoxitin. Hospital-acquired MRSA (HA-MRSA) strains had essentially SCCmec type IV (nine strains) or III (two strains) or I (one strain). One strain shown to carry ccrAB1 and ccrAB2 genes in combination with class B mec. Seven of 13 MRSA strains isolated from 2000 to 2006 were classified with major similarity group A harbored SCCmec type IV.  相似文献   

16.
The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method.  相似文献   

17.
Penicillin binding proteins (PBPs) are membrane-associated proteins that catalyze the final step of murein biosynthesis. These proteins function as either transpeptidases or carboxypeptidases and in a few cases demonstrate transglycosylase activity. Both transpeptidase and carboxypeptidase activities of PBPs occur at the d-Ala-d-Ala terminus of a murein precursor containing a disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-l-Ala-d-Glu-l-Lys-d-Ala-d-Ala. β-Lactam antibiotics inhibit these enzymes by competing with the pentapeptide precursor for binding to the active site of the enzyme. Here we describe the crystal structure, biochemical characteristics, and expression profile of PBP4, a low-molecular-mass PBP from Staphylococcus aureus strain COL. The crystal structures of PBP4-antibiotic complexes reported here were determined by molecular replacement, using the atomic coordinates deposited by the New York Structural Genomics Consortium. While the pbp4 gene is not essential for the viability of S. aureus, the knockout phenotype of this gene is characterized by a marked reduction in cross-linked muropeptide and increased vancomycin resistance. Unlike other PBPs, we note that expression of PBP4 was not substantially altered under different experimental conditions, nor did it change across representative hospital- or community-associated strains of S. aureus that were examined. In vitro data on purified recombinant S. aureus PBP4 suggest that it is a β-lactamase and is not trapped as an acyl intermediate with β-lactam antibiotics. Put together, the expression analysis and biochemical features of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.Penicillin binding proteins (PBPs) are critical components of the cell wall synthesis machinery in bacteria. These membrane-associated proteins are broadly classified as low-molecular-mass (LMM) PBPs that are monofunctional d,d-carboxypeptidase enzymes or multimodular high-molecular-mass (HMM) PBPs with multiple functional roles. PBPs, in general, are anchored to the cytoplasmic membrane by a noncleavable pseudo-signal peptide. In the case of the HMM PBPs, the cytoplasmic C-terminal domain binds penicillin and catalyzes peptidoglycan cross-linking, whereas the juxtamembrane N-terminal domain participates in transglycosylation (12). The catalytic penicillin-binding (PB) module also occurs as part of penicillin sensor transducers, such as Staphylococcus aureus MecR and Bacillus licheniformis BlaR (15). The transpeptidase activity in HMM PBPs is based on a conserved lysine residue located in the so-called catalytic S-X-X-K motif, whereas the other conserved S-X-N and K(H)-T(S)-G motifs govern carboxypeptidase activity and bind penicillin (20). The carboxypeptidase domain of PBPs is the target for β-lactam antibiotics in susceptible staphylococci (with penicillin MICs as low as 1 μg/ml).The transpeptidase activity of the PBPs occurs at the d-Ala-d-Ala terminus of a precursor disaccharide pentapeptide comprising N-acetylglucosamine and N-acetyl-muramic acid-l-Ala-d-Ala-l-Lys-d-Ala-d-Ala. This reaction is initiated by acylation involving a nucleophilic attack by the active-site serine on the penultimate d-Ala residue to form an acyl-enzyme complex. The C-terminal d-Ala is subsequently released from the peptide chain, followed by deacylation. In the case of HMM PBPs, deacylation occurs when an amino group on a second peptide substrate acts as an acceptor, resulting in a peptide cross-link between two adjacent peptidoglycan strands. The carboxypeptidase activity of LMM PBPs follows a similar reaction scheme, except that the acceptor in this case is a water molecule. β-Lactam antibiotics mimic the substrates of the PBPs. However, unlike the natural substrate, the β-lactam-PBP acyl adduct is stable and results in irreversible inhibition of PBP function. The β-lactam-PBP acyl adduct has been characterized extensively, with over 50 protein-antibiotic complexes reported to date (37). Thus, in contrast to the nonessential LMM PBPs, HMM PBPs constitute lethal targets for β-lactam antibiotics (6).Staphylococcus aureus is a gram-positive coccus and is one of the leading causes of high morbidity and mortality associated with both community- and hospital-associated infections (42, 46). This coccus shows extensive genomic variation, with over 22% of the genome dedicated to dispensable regions. A genome-scale analysis of a clinical strain of S. aureus is of particular interest in this context, wherein the conversion of a susceptible strain of S. aureus to a multidrug-resistant phenotype was shown to involve just 35 mutations in 13 loci, achieved within 3 months (36). Of the five PBPs in S. aureus, an acquired PBP, PBP2a, is the most extensively examined, as it was noted to be a specific marker for methicillin-resistant S. aureus (MRSA) strains. Among the intrinsic PBPs, PBP1 has been shown to play a key role in cell growth and division (2). PBP2 is a dual-function enzyme with both transglycosylase and transpeptidase activities, and inhibition of this protein leads to restrained peptidoglycan elongation and subsequent leakage of cytoplasmic contents due to cell lysis (34, 40). Inactivation of PBP3 neither changes the muropeptide composition of the cell wall nor significantly decreases the rate of autolysis. However, cells of abnormal size and shape and with disoriented septa are produced when bacteria with inactivated PBP3 are grown with sub-MIC levels of methicillin (29).S. aureus PBP4 is a carboxypeptidase and is needed for the secondary cross-linking of peptidoglycan (19). However, it is not essential for cell growth under laboratory conditions, because mutants of S. aureus defective in PBP4 are viable (48). Overexpression of PBP4 was noted to result in an increase in β-lactam resistance and in greater cross-linking of the peptidoglycan (18). S. aureus PBP4 is similar to other LMM PBPs and is grouped within the superfamily of penicillin-susceptible and penicillin-interacting enzymes. However, homologues of PBP4 have a different phenotype in other species (1, 15). For example, a mutation of PBP4 in Pseudomonas aeruginosa triggers an AmpR-dependent overproduction of the chromosomal β-lactamase AmpC. The P. aeruginosa PBP4 mutant also activates CreBC, a two-component regulator, thereby mediating β-lactam resistance (33). Indeed, S. aureus PBP4 has been suggested to have different functions in strains with different genetic backgrounds (26). However, based on in vitro and genetic data, S. aureus PBP4 is primarily a transpeptidase and has little d,d-carboxypeptidase activity. This is also supported by the observation that increased carboxypeptidase activity decreases cell wall cross-linking due to loss of the free d-Ala-d-Ala termini necessary for transpeptidation (10). In this context, it is pertinent that pbp4 gene knockout strains of S. aureus were more resistant to the glycopeptide antibiotic vancomycin (46).Here we present the biochemical and structural characteristics of PBP4 from S. aureus strain COL. S. aureus PBP4 is a β-lactamase. A comparison of the crystal structure of S. aureus PBP4 in complex with antibiotic with that of its Escherichia coli homologue, PBP5, provides a conformational and biochemical rationale for the β-lactamase activity of PBP4. Monitoring the expression of PBP4 in the MRSA strain COL and representative clinical strains of S. aureus suggested that the expression level of PBP4 does not fluctuate substantially across these strains. Together, these data on the structure, expression, activity, and regulation of PBP4 provide a framework for understanding the function of this protein in S. aureus and its role in antimicrobial resistance.  相似文献   

18.
Staphylococcus aureus is one of the major causes of community and hospital-acquired infections. Bacteriophage considered as a major risk factor acquires S. aureus new virulence genetic elements. A total number of 119 S. aureus isolated from different specimens obtained from (RKH) were distinguished by susceptibility to 19 antimicrobial agents, phage typing, and PCR amplification for mecA gene. All of MRSA isolates harbored mecA gene, except three unique isolates. The predominant phage group is belonging to the (mixed group). Phage group (II) considered as an epidemiological marker correlated to β-lactamase hyper producer isolates. MRSA isolates indicated high prevalence of phage group (II) with highly increase for phage types (Ø3A), which were correlated to the skin. Phage types (Ø80/Ø81) played an important roll in Community Acquired Methicillin Resistant S. aureus (CAMRSA). Three outpatients MRSA isolates had low multiresistance against Bacitracin (Ba) and Fusidic acid (FD), considered as CAMRSA isolates. It was detected that group I typed all FD-resistant MSSA isolates. Phage groups (M) and (II) were found almost to be integrated for Gentamycin (GN) resistance especially phage type (Ø95) which relatively increased up to 20% in MRSA. Tetracycline (TE) resistant isolates typed by groups (II) and (III) in MSSA. Only one isolate resistant to Sulphamethoxazole/Trimethoprim (SXT) was typed by (III/V) alone in MSSA. MRSA isolates resistant to Chloramphenicol (C) and Ba were typed by all groups except (V). It could be concluded that (PERSA) S. aureus isolates from the wound that originated and colonized, and started to build up multi-resistance against the topical treatment antibiotics. In this study, some unique sporadic isolates for both MRSA and MSSA could be used as biological, molecular and epidemiological markers such as prospective tools.  相似文献   

19.

Background

Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs β-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for β-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs.

Methodology/Principal Findings

Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains.

Conclusions

We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.  相似文献   

20.
In terms of life- menaced contagion, methicillin resistant Staphylococcus aureus (MRSA) is known to be one of which and it is truly notable in the contaminated food causing a community health anxiety. However, the occurrence of S. aureus and MRSA in diverse kinds of dairy products have been tested in this study. Samples from: raw milk (unpasteurized) from horse, goat, camel, and cow origins and unpacked cheese were checked for the recovered strains of such bacterium and MRSA. Wholly, MRSA isolates were verified for antimicrobial susceptibility and further characterized by mecA and staphylococcal cassette chromosome mec (SCCmec) typing. Also, Panton-Valentine Leukocidin (PVL), Staphylococcus aureus protein A (spa), and Staphylococcal enterotoxins (SEs) were also tested between all positive MRSA isolates in order to discover the virulence factors. Consequently, 70% of the 100 collected dairy products samples were contaminated by S. aureus bacteria and 72.9% of them were defined as MRSA. 9.8% of MRSA isolates contained mecA genes with SCCmec type II (80%) as the most common SCCmec type. Moreover, large number of MRSA isolates were identified as multidrug resistance and 28.6% of MRSA-mecA positive isolates were also carried vancomycin resistance genes (i.e., vanB). Too, spa gene was detected between 9.8% of MRSA isolates but PVL gene was not spotted at all. Additionally, the existing of SEs was variable between MRSA isolates and the most common type was SEH (51%). In general, our results confirmed that raw milk and unpacked cheese in the Kingdom of Saudi Arabia (Riyadh) is a potential vehicle for multidrug resistant MRSA transmission. It is a critical civic health menace and stresses, thus; the need of applying well cleanliness practices is essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号